Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Plant Dis ; 102(7): 1218-1233, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30673582

RESUMO

International trade and travel are the driving forces behind the spread of invasive plant pathogens around the world, and human-mediated movement of plants and plant products is now generally accepted as the primary mode of their introduction, resulting in huge disturbance to ecosystems and severe socio-economic impact. These problems are exacerbated under the present conditions of rapid climatic change. We report an overview of the Canadian research activities on Phytophthora ramorum. Since the first discovery and subsequent eradication of P. ramorum on infected ornamentals in nurseries in Vancouver, British Columbia, in 2003, a research team of Canadian government scientists representing the Canadian Forest Service, Canadian Food Inspection Agency, and Agriculture and Agri-Food Canada worked together over a 10-year period and have significantly contributed to many aspects of research and risk assessment on this pathogen. The overall objectives of the Canadian research efforts were to gain a better understanding of the molecular diagnostics of P. ramorum, its biology, host-pathogen interactions, and management options. With this information, it was possible to develop pest risk assessments and evaluate the environmental and economic impact and future research needs and challenges relevant to P. ramorum and other emerging forest Phytophthora spp.


Assuntos
Phytophthora/fisiologia , Doenças das Plantas/microbiologia , Pesquisa/estatística & dados numéricos , Árvores/microbiologia , Antibiose/fisiologia , Canadá , Fungicidas Industriais/farmacologia , Geografia , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Phytophthora/efeitos dos fármacos , Doenças das Plantas/economia , Pesquisa/economia , Árvores/classificação
2.
Mycol Res ; 113(Pt 6-7): 713-24, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19249365

RESUMO

Wide variation and overlap in morphological characters have led to confusion in species identification within the fungal rust genus Melampsora. The Melampsora species with uredinial-telial stages on white poplar and aspens are especially prone to misidentification. This group includes the Melampsora populnea species complex and the highly destructive pine twisting rust, Melampsora pinitorqua, which alternates between hosts in Populus section Populus and Pinus. Our objective was to compare morphologically based identification to genetic material extracted from Melampsora species pathogenic to aspen and white poplar. We compared morphometric traits and DNA barcodes obtained from internal transcribed spacer (ITS), large ribosomal RNA subunit (28S), and mitochondrial cytochrome oxidase 1 (CO1) sequences to delimit within this taxonomically difficult group. Eight different Melampsora species were initially defined based on host specificity and morphometric data. DNA barcodes were then overlaid on these initial species definitions. The DNA barcodes, specifically those defined on ITS and 28S sequences, provided a highly accurate means of identifying and resolving Melampsora taxa. We highlighted species misidentification in specimens from Canadian herbaria related to either Melampsora medusae f. sp. tremuloidae or Melampsora aecidioides. Finally, we evidenced that the north-American species found on Populus alba, M. aecidioides is closely related but distinct from the four species of the M. populnea complex (Melampsora larici-tremulae, Melampsora magnusiana, Melampsora pinitorqua, and Melampsora rostrupii) found in Eurasia.


Assuntos
Basidiomycota/genética , Basidiomycota/isolamento & purificação , DNA Fúngico/genética , Pinus/microbiologia , Doenças das Plantas/microbiologia , Populus/microbiologia , Basidiomycota/classificação , DNA Espaçador Ribossômico/genética , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 28S/genética , Análise de Sequência de DNA
3.
PLoS One ; 13(6): e0197025, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29949577

RESUMO

Pestalopezia brunneopruinosa, the type species of Pestalopezia in Leotiomycetes, produces typical cup-shaped ascomata. Because its asexual morph has conidia comprised of five cells including apical and basal appendages and three pigmented median cells, it was first described as Pestalotia gibbosa, which belongs to Sordariomycetes. This contradiction has not been resolved due to the difficulty in isolating this fungus in culture. In this study, we isolated separate strains from the sexual morph and the asexual morph for molecular analysis. Phylogenetic trees of Sporocadaceae based on internal transcribed spacer, partial ß-tubulin, and partial translation elongation factor 1-alpha sequence datasets revealed that both strains fall into the same taxon, in a clade in Pestalotiopsis sensu stricto alongside P. gaultheriae and P. spathulata. We provide the first evidence that fungi producing cup-shaped ascomata in Pestalotiopsis belong to Sordariomycetes, and we have proposed the transfer of Pestalopezia brunneopruinosa to Pestalotiopsis gibbosa.


Assuntos
Ascomicetos/classificação , Ascomicetos/genética , Proteínas Fúngicas/genética , Filogenia , Tubulina (Proteína)/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa