RESUMO
OBJECTIVE: To describe national patterns of National Health Service (NHS) analysis of mismatch repair (MMR) genes in England using individual-level data submitted to the National Disease Registration Service (NDRS) by the NHS regional molecular genetics laboratories. DESIGN: Laboratories submitted individual-level patient data to NDRS against a prescribed data model, including (1) patient identifiers, (2) test episode data, (3) per-gene results and (4) detected sequence variants. Individualised per-laboratory algorithms were designed and applied in NDRS to extract and map the data to the common data model. Laboratory-level MMR activity audit data from the Clinical Molecular Genetics Society/Association of Clinical Genomic Science were used to assess early years' missing data. RESULTS: Individual-level data from patients undergoing NHS MMR germline genetic testing were submitted from all 13 English laboratories performing MMR analyses, comprising in total 16 722 patients (9649 full-gene, 7073 targeted), with the earliest submission from 2000. The NDRS dataset is estimated to comprise >60% of NHS MMR analyses performed since inception of NHS MMR analysis, with complete national data for full-gene analyses for 2016 onwards. Out of 9649 full-gene tests, 2724 had an abnormal result, approximately 70% of which were (likely) pathogenic. Data linkage to the National Cancer Registry demonstrated colorectal cancer was the most frequent cancer type in which full-gene analysis was performed. CONCLUSION: The NDRS MMR dataset is a unique national pan-laboratory amalgamation of individual-level clinical and genomic patient data with pseudonymised identifiers enabling linkage to other national datasets. This growing resource will enable longitudinal research and can form the basis of a live national genomic disease registry.
Assuntos
Neoplasias , Medicina Estatal , Humanos , Reparo de Erro de Pareamento de DNA/genética , Laboratórios , GenômicaRESUMO
The clinical utility of microarray technologies when used in the context of prenatal diagnosis lies in the technology's ability to detect submicroscopic copy number changes that are associated with clinically significant outcomes. We have carried out a systematic review of the literature to calculate the utility of prenatal microarrays in the presence of a normal conventional karyotype. Amongst 12,362 cases in studies that recruited cases from all prenatal ascertainment groups, 295/12,362 (2.4%) overall were reported to have copy number changes with associated clinical significance (pCNC), 201/3090 (6.5%) when ascertained with an abnormal ultrasound, 50/5108 (1.0%) when ascertained because of increased maternal age and 44/4164 (1.1%) for all other ascertainment groups (e.g. parental anxiety and abnormal serum screening result). When additional prenatal microarray studies are included in which ascertainment was restricted to fetuses with abnormal ultrasound scans, 262/3730 (7.0%) were reported to have pCNCs.
Assuntos
Análise Citogenética , Cariótipo , Análise em Microsséries , Diagnóstico Pré-Natal/métodos , Aberrações Cromossômicas , Feminino , Humanos , Idade Materna , Gravidez , Ultrassonografia Pré-NatalRESUMO
Background: Approximately 1 in 1000 men have a 47,XYY karyotype. Previous publications have presented cases of infertile XYY men and have suggested that the additional Y chromosome may cause disrupted meiosis leading to sperm apoptosis. The purpose of the current study was to determine whether XYY men are over-represented in infertility cohorts. Methods: In this paper, an ongoing infertility cohort was evaluated for Y chromosome microdeletions using the MLPA technique and the data from the first 2000 referrals were recorded. Moreover, the MLPA technique detected 47,XYY karyotypes. Results: Four XYY individuals were identified within the cohort. One of the four XYY men was shown to have an apparent gr/gr partial AZFc deletion on both Y chromosomes while Sertoli cell only syndrome was detected in another case. The other two cases (out of 2000) might, therefore, represent an incidental finding. Conclusion: The gr/gr deletion is not detectable by the multiplex PCR method; therefore, there might be additional explanations for the fertility problems of infertile XYY men reported in previously published articles. It seems that among other cases, their XYY karyotype may be coincidental, rather than causative of their fertility issues.
RESUMO
Oculocutaneous albinism type 1 (OCA1) is caused by pathogenic variants in the TYR (tyrosinase) gene which encodes the critical and rate-limiting enzyme in melanin synthesis. It is the most common OCA subtype found in Caucasians, accounting for ~50% of cases worldwide. The apparent 'missing heritability' in OCA is well described, with ~25-30% of clinically diagnosed individuals lacking two clearly pathogenic variants. Here we undertook empowered genetic studies in an extensive multigenerational Amish family, alongside a review of previously published literature, a retrospective analysis of in-house datasets, and tyrosinase activity studies. Together this provides irrefutable evidence of the pathogenicity of two common TYR variants, p.(Ser192Tyr) and p.(Arg402Gln) when inherited in cis alongside a pathogenic TYR variant in trans. We also show that homozygosity for the p.(Ser192Tyr)/p.(Arg402Gln) TYR haplotype results in a very mild, but fully penetrant, albinism phenotype. Together these data underscore the importance of including the TYR p.(Ser192Tyr)/p.(Arg402Gln) in cis haplotype as a pathogenic allele causative of OCA, which would likely increase molecular diagnoses in this missing heritability albinism cohort by 25-50%.
RESUMO
Our aim was to construct a streamlined technical workflow to facilitate a prospective, multi-centre evaluation of array comparative genomic hybridisation (array-CGH) in the prenatal diagnostic context. A collection of commercially available DNA extraction and quantification techniques were evaluated and compared using minimal quantities of amniotic fluid, chorionic villi and cultured cells. When prenatal DNA of suitable quality and quantity was obtained, array-CGH was performed using Oxford Gene Technology's (OGT, Oxford, UK) CytoSure™ ISCA 8 × 60 K oligo array platform. With starting quantities of 2-4 ml amniotic fluid, 2-5 mg chorionic villi or under 150,000 cultured cells the following optimised technical workflow was identified: DNA extraction using the iGENatal™ kit (igenbiotech, Madrid, Spain) and quantification by the Qubit® 2.0 Fluorometer with the Qubit® dsDNA BR assay kit (Invitrogen™, Eugene, OR, USA). In addition, it was elucidated that array-CGH can be successfully performed with as little as 125 ng DNA in the experiment using the OGT CytoSure™ ISCA 8 × 60 K oligo array platform. Amidst an on-going debate on whether array-CGH should be applied in the prenatal diagnostic setting, by following the technical recommendations described here genetics laboratories can now gain exposure to prenatal array-CGH testing without compromising the conventional karyotype result.
Assuntos
Hibridização Genômica Comparativa/métodos , Cariotipagem/métodos , Diagnóstico Pré-Natal , Aberrações Cromossômicas , Humanos , Análise de Sequência com Séries de Oligonucleotídeos/métodosRESUMO
EGFR mutation testing of tumor samples is routinely performed to predict sensitivity to treatment with tyrosine kinase inhibitors for patients with non-small cell lung cancer. At least 9 different methodologies are employed in UK laboratories, and the aim of this study was to compare the sensitivity of different methods for the detection of EGFR mutations. Participating laboratories were sent coded samples with varying mutation loads (from 0% to 15%) to be tested for the p.Leu858Arg (p.L858R) missense mutation and c.2235_2249del exon 19 deletion. The p.L858R mutation and deletions within exon 19 of the EGFR gene account for â¼90% of mutation-positive cases. The 11 laboratories used their standard testing method(s) and submitted 15 sets of results for the p.L858R samples and 10 for the exon 19 deletion. The p.Leu858Arg (p.L858R) mutation was detected at levels between 1% and 7.5% by Sanger sequencing, pyrosequencing, real-time polymerase chain reaction (PCR), amplification refractory mutation system, and capillary electrophoresis single-strand conformation analysis. The c.2235_2249del mutation was detected at 1% to 5% by fragment size analysis, Sanger sequencing or real-time PCR. A mutation was detected in 24/25 (96%) of the samples tested which contained 5% mutated DNA. The 1% sensitivity claimed for commercial real-time PCR-targeted EGFR tests was achieved and our results show greater sensitivity for the Sanger sequencing and pyrosequencing screening methods compared to the 10% to 20% detection levels cited on clinical diagnostic reports. We conclude that multiple methodologies are suitable for the detection of acquired EGFR mutations.
Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Receptores ErbB/genética , Mutação de Sentido Incorreto , Patologia Molecular/métodos , Deleção de Sequência , Humanos , Sensibilidade e Especificidade , Reino UnidoRESUMO
BACKGROUND: In recent studies, partial deletions of the azoospermia factor c region (AZFc) on the Y-chromosome have been detected in males with infertility problems. However, there has been a lot of debate about their significance. In order to study such deletions, a simple but accurate method for their detection was applied in this study. METHODS: We present data obtained from the Multiplex Ligation-dependent Probe Amplification (MLPA) assay using a new Y-chromosome-specific MLPA probemix (P360) which allows the easy detection of partial AZFc deletions. RESULTS: Partial AZFc deletions were detected in 8% of our cohort of previously mutation-negative infertile males (and 0% of the fertile control cohort). CONCLUSION: These results provide further evidence of the causality of partial AZFc deletions. None of the partial AZFc deletions were detectable by the standard multiplex PCR method, demonstrating the advantage of the MLPA method.
RESUMO
This study was an investigation of 79 patients referred to the Wessex Regional Genetics Laboratory with suspected Russell-Silver Syndrome or unexplained short stature/intra uterine growth restriction, warranting genetic investigation. Methylation status was analysed at target sequences within eleven imprinted loci (PLAGL1, IGF2R, PEG10, MEST1, GRB10, KCNQ1OT1, H19, IGF2P0, DLK1, PEG3, NESPAS). Thirty seven percent (37%) (29 of 79) of samples were shown to have a methylation abnormality. The commonest finding was a loss of methylation at H19 (23 of 29), as previously reported in Russell-Silver Syndrome. In addition, four of these patients had methylation anomalies at other loci, of whom two showed hypomethylation of multiple imprinted loci, and two showed a complete gain of methylation at IGF2R. This latter finding was also present in five other patients who did not have demonstrable changes at H19. In total, 7 of 79 patients showed a gain of methylation at IGF2R and this was significantly different from a normal control population of 267 individuals (P=0.002). This study in patients with growth restriction shows the importance of widening the epigenetic investigation to include multiple imprinted loci and highlights potential involvement of the IGF2R locus.
Assuntos
Metilação de DNA/genética , Retardo do Crescimento Fetal/genética , Loci Gênicos , Impressão Genômica , Transtornos do Crescimento/genética , Criança , Pré-Escolar , Estudos de Coortes , Deficiências do Desenvolvimento/genética , Epigênese Genética , Feminino , Loci Gênicos/genética , Impressão Genômica/fisiologia , Humanos , Recém-Nascido , Gravidez , RNA Longo não Codificante , RNA não Traduzido/genética , Receptor IGF Tipo 2/genética , Análise de Sequência de DNA , Síndrome de Silver-Russell/genéticaRESUMO
Genomic imprinting is an epigenetic phenomenon restricting gene expression in a manner dependent on parent of origin. Imprinted gene products are critical regulators of growth and development, and imprinting disorders are associated with both genetic and epigenetic mutations, including disruption of DNA methylation within the imprinting control regions (ICRs) of these genes. It was recently reported that some patients with imprinting disorders have a more generalised imprinting defect, with hypomethylation at a range of maternally methylated ICRs. We report a cohort of 149 patients with a clinical diagnosis of Beckwith-Wiedemann syndrome (BWS), including 81 with maternal hypomethylation of the KCNQ1OT1 ICR. Methylation analysis of 11 ICRs in these patients showed that hypomethylation affecting multiple imprinted loci was restricted to 17 patients with hypomethylation of the KCNQ1OT1 ICR, and involved only maternally methylated loci. Both partial and complete hypomethylation was demonstrated in these cases, suggesting a possible postzygotic origin of a mosaic imprinting error. Some ICRs, including the PLAGL1 and GNAS/NESPAS ICRs implicated in the aetiology of transient neonatal diabetes and pseudohypoparathyroidism type 1b, respectively, were more frequently affected than others. Although we did not find any evidence for mutation of the candidate gene DNMT3L, these results support the hypotheses that trans-acting factors affect the somatic maintenance of imprinting at multiple maternally methylated loci and that the clinical presentation of these complex cases may reflect the loci and tissues affected with the epigenetic abnormalities.
Assuntos
Síndrome de Beckwith-Wiedemann/genética , Proteínas de Ciclo Celular/genética , Metilação de DNA , Subunidades alfa Gs de Proteínas de Ligação ao GTP/genética , Impressão Genômica , Fatores de Transcrição/genética , Proteínas Supressoras de Tumor/genética , Síndrome de Beckwith-Wiedemann/patologia , Cromograninas , DNA (Citosina-5-)-Metiltransferases/genética , Análise Mutacional de DNA , Feminino , Humanos , Masculino , Reação em Cadeia da Polimerase , Polimorfismo GenéticoRESUMO
We have previously described individuals presenting with transient neonatal diabetes and showing a variable pattern of DNA hypomethylation at imprinted loci throughout the genome. We now report mutations in ZFP57, which encodes a zinc-finger transcription factor expressed in early development, in seven pedigrees with a shared pattern of mosaic hypomethylation and a conserved range of clinical features. This is the first description of a heritable global imprinting disorder that is compatible with life.