Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Opt Express ; 32(9): 16090-16102, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38859246

RESUMO

In this study, we developed a rigid-scope system that can perform hyperspectral imaging (HSI) between visible and 1600 nm wavelengths using a supercontinuum light source and an acousto-optic tunable filter to emit specific wavelengths. The system optical performance was verified, and the classification ability was investigated. Consequently, it was demonstrated that HSI (490-1600 nm) could be performed. In addition, seven different targets could be classified by the neural network with an accuracy of 99.6%, recall of 93.7%, and specificity of 99.1% when the wavelength range of over 1000 nm (OTN) was extracted from HSI data as train data.

2.
Opt Express ; 31(8): 12261-12279, 2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37157389

RESUMO

Hyperspectral (HS) imaging (HSI) expands the number of channels captured within the electromagnetic spectrum with respect to regular imaging. Thus, microscopic HSI can improve cancer diagnosis by automatic classification of cells. However, homogeneous focus is difficult to achieve in such images, being the aim of this work to automatically quantify their focus for further image correction. A HS image database for focus assessment was captured. Subjective scores of image focus were obtained from 24 subjects and then correlated to state-of-the-art methods. Maximum Local Variation, Fast Image Sharpness block-based Method and Local Phase Coherence algorithms provided the best correlation results. With respect to execution time, LPC was the fastest.

3.
J Med Internet Res ; 25: e44030, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-37140973

RESUMO

The use of artificial intelligence (AI) and big data in medicine has increased in recent years. Indeed, the use of AI in mobile health (mHealth) apps could considerably assist both individuals and health care professionals in the prevention and management of chronic diseases, in a person-centered manner. Nonetheless, there are several challenges that must be overcome to provide high-quality, usable, and effective mHealth apps. Here, we review the rationale and guidelines for the implementation of mHealth apps and the challenges regarding quality, usability, and user engagement and behavior change, with a special focus on the prevention and management of noncommunicable diseases. We suggest that a cocreation-based framework is the best method to address these challenges. Finally, we describe the current and future roles of AI in improving personalized medicine and provide recommendations for developing AI-based mHealth apps. We conclude that the implementation of AI and mHealth apps for routine clinical practice and remote health care will not be feasible until we overcome the main challenges regarding data privacy and security, quality assessment, and the reproducibility and uncertainty of AI results. Moreover, there is a lack of both standardized methods to measure the clinical outcomes of mHealth apps and techniques to encourage user engagement and behavior changes in the long term. We expect that in the near future, these obstacles will be overcome and that the ongoing European project, Watching the risk factors (WARIFA), will provide considerable advances in the implementation of AI-based mHealth apps for disease prevention and health promotion.


Assuntos
Aplicativos Móveis , Telemedicina , Humanos , Inteligência Artificial , Reprodutibilidade dos Testes , Telemedicina/métodos , Fatores de Risco
4.
Sensors (Basel) ; 23(2)2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36679552

RESUMO

Diabetes mellitus presents a high prevalence around the world. A common and long-term derived complication is diabetic foot ulcers (DFUs), which have a global prevalence of roughly 6.3%, and a lifetime incidence of up to 34%. Infrared thermograms, covering the entire plantar aspect of both feet, can be employed to monitor the risk of developing a foot ulcer, because diabetic patients exhibit an abnormal pattern that may indicate a foot disorder. In this study, the publicly available INAOE dataset composed of thermogram images of healthy and diabetic subjects was employed to extract relevant features aiming to establish a set of state-of-the-art features that efficiently classify DFU. This database was extended and balanced by fusing it with private local thermograms from healthy volunteers and generating synthetic data via synthetic minority oversampling technique (SMOTE). State-of-the-art features were extracted using two classical approaches, LASSO and random forest, as well as two variational deep learning (DL)-based ones: concrete and variational dropout. Then, the most relevant features were detected and ranked. Subsequently, the extracted features were employed to classify subjects at risk of developing an ulcer using as reference a support vector machine (SVM) classifier with a fixed hyperparameter configuration to evaluate the robustness of the selected features. The new set of features extracted considerably differed from those currently considered state-of-the-art but provided a fair performance. Among the implemented extraction approaches, the variational DL ones, particularly the concrete dropout, performed the best, reporting an F1 score of 90% using the aforementioned SVM classifier. In comparison with features previously considered as the state-of-the-art, approximately 15% better performance was achieved for classification.


Assuntos
Diabetes Mellitus , Pé Diabético , Humanos , Pé Diabético/diagnóstico ,
5.
Sensors (Basel) ; 23(4)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36850461

RESUMO

Hyperspectral Imaging (HSI) is increasingly adopted in medical applications for the usefulness of understanding the spectral signature of specific organic and non-organic elements. The acquisition of such images is a complex task, and the commercial sensors that can measure such images is scarce down to the point that some of them have limited spatial resolution in the bands of interest. This work proposes an approach to enhance the spatial resolution of hyperspectral histology samples using super-resolution. As the data volume associated to HSI has always been an inconvenience for the image processing in practical terms, this work proposes a relatively low computationally intensive algorithm. Using multiple images of the same scene taken in a controlled environment (hyperspectral microscopic system) with sub-pixel shifts between them, the proposed algorithm can effectively enhance the spatial resolution of the sensor while maintaining the spectral signature of the pixels, competing in performance with other state-of-the-art super-resolution techniques, and paving the way towards its use in real-time applications.


Assuntos
Algoritmos , Ambiente Controlado , Técnicas Histológicas , Imageamento Hiperespectral , Processamento de Imagem Assistida por Computador
6.
Sensors (Basel) ; 22(16)2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-36015906

RESUMO

In recent years, researchers designed several artificial intelligence solutions for healthcare applications, which usually evolved into functional solutions for clinical practice. Furthermore, deep learning (DL) methods are well-suited to process the broad amounts of data acquired by wearable devices, smartphones, and other sensors employed in different medical domains. Conceived to serve the role of diagnostic tool and surgical guidance, hyperspectral images emerged as a non-contact, non-ionizing, and label-free technology. However, the lack of large datasets to efficiently train the models limits DL applications in the medical field. Hence, its usage with hyperspectral images is still at an early stage. We propose a deep convolutional generative adversarial network to generate synthetic hyperspectral images of epidermal lesions, targeting skin cancer diagnosis, and overcome small-sized datasets challenges to train DL architectures. Experimental results show the effectiveness of the proposed framework, capable of generating synthetic data to train DL classifiers.


Assuntos
Inteligência Artificial , Neoplasias Cutâneas , Atenção à Saúde , Humanos , Redes Neurais de Computação , Neoplasias Cutâneas/diagnóstico
7.
Sensors (Basel) ; 22(6)2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35336337

RESUMO

Hyperspectral Imaging (HSI) techniques have demonstrated potential to provide useful information in a broad set of applications in different domains, from precision agriculture to environmental science. A first step in the preparation of the algorithms to be employed outdoors starts at a laboratory level, capturing a high amount of samples to be analysed and processed in order to extract the necessary information about the spectral characteristics of the studied samples in the most precise way. In this article, a custom-made scanning system for hyperspectral image acquisition is described. Commercially available components have been carefully selected in order to be integrated into a flexible infrastructure able to obtain data from any Generic Interface for Cameras (GenICam) compliant devices using the gigabyte Ethernet interface. The entire setup has been tested using the Specim FX hyperspectral series (FX10 and FX17) and a Graphical User Interface (GUI) has been developed in order to control the individual components and visualise data. Morphological analysis, spectral response and optical aberration of these pushbroom-type hyperspectral cameras have been evaluated prior to the validation of the whole system with different plastic samples for which spectral signatures are extracted and compared with well-known spectral libraries.


Assuntos
Algoritmos , Cintilografia
8.
Sensors (Basel) ; 22(22)2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36433516

RESUMO

Currently, one of the most common causes of death worldwide is cancer. The development of innovative methods to support the early and accurate detection of cancers is required to increase the recovery rate of patients. Several studies have shown that medical Hyperspectral Imaging (HSI) combined with artificial intelligence algorithms is a powerful tool for cancer detection. Various preprocessing methods are commonly applied to hyperspectral data to improve the performance of the algorithms. However, there is currently no standard for these methods, and no studies have compared them so far in the medical field. In this work, we evaluated different combinations of preprocessing steps, including spatial and spectral smoothing, Min-Max scaling, Standard Normal Variate normalization, and a median spatial smoothing technique, with the goal of improving tumor detection in three different HSI databases concerning colorectal, esophagogastric, and brain cancers. Two machine learning and deep learning models were used to perform the pixel-wise classification. The results showed that the choice of preprocessing method affects the performance of tumor identification. The method that showed slightly better results with respect to identifing colorectal tumors was Median Filter preprocessing (0.94 of area under the curve). On the other hand, esophagogastric and brain tumors were more accurately identified using Min-Max scaling preprocessing (0.93 and 0.92 of area under the curve, respectively). However, it is observed that the Median Filter method smooths sharp spectral features, resulting in high variability in the classification performance. Therefore, based on these results, obtained with different databases acquired by different HSI instrumentation, the most relevant preprocessing technique identified in this work is Min-Max scaling.


Assuntos
Inteligência Artificial , Neoplasias Encefálicas , Humanos , Bases de Dados Factuais , Algoritmos , Diagnóstico por Imagem
9.
Sensors (Basel) ; 22(19)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36236240

RESUMO

Cancer originates from the uncontrolled growth of healthy cells into a mass. Chromophores, such as hemoglobin and melanin, characterize skin spectral properties, allowing the classification of lesions into different etiologies. Hyperspectral imaging systems gather skin-reflected and transmitted light into several wavelength ranges of the electromagnetic spectrum, enabling potential skin-lesion differentiation through machine learning algorithms. Challenged by data availability and tiny inter and intra-tumoral variability, here we introduce a pipeline based on deep neural networks to diagnose hyperspectral skin cancer images, targeting a handheld device equipped with a low-power graphical processing unit for routine clinical testing. Enhanced by data augmentation, transfer learning, and hyperparameter tuning, the proposed architectures aim to meet and improve the well-known dermatologist-level detection performances concerning both benign-malignant and multiclass classification tasks, being able to diagnose hyperspectral data considering real-time constraints. Experiments show 87% sensitivity and 88% specificity for benign-malignant classification and specificity above 80% for the multiclass scenario. AUC measurements suggest classification performance improvement above 90% with adequate thresholding. Concerning binary segmentation, we measured skin DICE and IOU higher than 90%. We estimated 1.21 s, at most, consuming 5 Watts to segment the epidermal lesions with the U-Net++ architecture, meeting the imposed time limit. Hence, we can diagnose hyperspectral epidermal data assuming real-time constraints.


Assuntos
Melanoma , Neoplasias Cutâneas , Dermoscopia/métodos , Humanos , Melaninas , Redes Neurais de Computação , Neoplasias Cutâneas/diagnóstico , Neoplasias Cutâneas/patologia
10.
Sensors (Basel) ; 21(3)2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33498303

RESUMO

This paper shows new contributions in the detection of skin cancer, where we present the use of a customized hyperspectral system that captures images in the spectral range from 450 to 950 nm. By choosing a 7 × 7 sub-image of each channel in the hyperspectral image (HSI) and then taking the mean and standard deviation of these sub-images, we were able to make fits of the resulting curves. These fitted curves had certain characteristics, which then served as a basis of classification. The most distinct fit was for the melanoma pigmented skin lesions (PSLs), which is also the most aggressive malignant cancer. Furthermore, we were able to classify the other PSLs in malignant and benign classes. This gives us a rather complete classification method for PSLs with a novel perspective of the classification procedure by exploiting the variability of each channel in the HSI.


Assuntos
Melanoma , Neoplasias Cutâneas , Humanos , Melanoma/diagnóstico , Neoplasias Cutâneas/diagnóstico
11.
Int J Mol Sci ; 22(6)2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33802143

RESUMO

(1) Background: Chemotherapy-induced peripheral neuropathy (CIPN) decreases the quality of life of patients and can lead to a dose reduction and/or the interruption of chemotherapy treatment, limiting its effectiveness. Potential pathophysiological mechanisms involved in the pathogenesis of CIPN include chronic oxidative stress and subsequent increase in free radicals and proinflammatory cytokines. Approaches for the treatment of CIPN are highly limited in their number and efficacy, although several antioxidant-based therapies have been tried. On the other hand, ozone therapy can induce an adaptive antioxidant and anti-inflammatory response, which could be potentially useful in the management of CIPN. (2) Methods: The aims of this works are: (a) to summarize the potential mechanisms that could induce CIPN by the most relevant drugs (platinum, taxanes, vinca alkaloids, and bortezomib), with particular focus on the role of oxidative stress; (b) to summarize the current situation of prophylactic and treatment approaches; (c) to describe the action mechanisms of ozone therapy to modify oxidative stress and inflammation with its potential repercussions for CIPN; (d) to describe related experimental and clinical reports with ozone therapy in chemo-induced neurologic symptoms and CIPN; and (e) to show the main details about an ongoing focused clinical trial. (3) Results: A wide background relating to the mechanisms of action and a small number of experimental and clinical reports suggest that ozone therapy could be useful to prevent or improve CIPN. (4) Conclusions: Currently, there are no clinically relevant approaches for the prevention and treatment of stablished CIPN. The potential role of ozone therapy in this syndrome merits further research. Randomized controlled trials are ongoing.


Assuntos
Antineoplásicos/efeitos adversos , Estresse Oxidativo/efeitos dos fármacos , Ozônio/uso terapêutico , Doenças do Sistema Nervoso Periférico/prevenção & controle , Anti-Inflamatórios/uso terapêutico , Antioxidantes/uso terapêutico , Humanos , Neoplasias/tratamento farmacológico , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Qualidade de Vida , Ensaios Clínicos Controlados Aleatórios como Assunto
12.
Sensors (Basel) ; 20(7)2020 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-32235483

RESUMO

Hyperspectral imaging (HSI) technology has demonstrated potential to provide useful information about the chemical composition of tissue and its morphological features in a single image modality. Deep learning (DL) techniques have demonstrated the ability of automatic feature extraction from data for a successful classification. In this study, we exploit HSI and DL for the automatic differentiation of glioblastoma (GB) and non-tumor tissue on hematoxylin and eosin (H&E) stained histological slides of human brain tissue. GB detection is a challenging application, showing high heterogeneity in the cellular morphology across different patients. We employed an HSI microscope, with a spectral range from 400 to 1000 nm, to collect 517 HS cubes from 13 GB patients using 20× magnification. Using a convolutional neural network (CNN), we were able to automatically detect GB within the pathological slides, achieving average sensitivity and specificity values of 88% and 77%, respectively, representing an improvement of 7% and 8% respectively, as compared to the results obtained using RGB (red, green, and blue) images. This study demonstrates that the combination of hyperspectral microscopic imaging and deep learning is a promising tool for future computational pathologies.


Assuntos
Encéfalo/diagnóstico por imagem , Glioblastoma/diagnóstico , Imageamento Hiperespectral , Rede Nervosa , Algoritmos , Encéfalo/patologia , Aprendizado Profundo , Glioblastoma/patologia , Humanos , Processamento de Imagem Assistida por Computador , Redes Neurais de Computação
13.
Sensors (Basel) ; 20(12)2020 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-32560551

RESUMO

A calorimetric sensor has been designed to measure the heat flow dissipated by a 2 x 2 cm2 skin surface. In this work, a non-invasive method is proposed to determine the heat capacity and thermal conductance of the area of skin where the measurement is made. The method consists of programming a linear variation of the temperature of the sensor thermostat during its application to the skin. The sensor is modelled as a two-inputs and two-outputs system. The inputs are 1) the power dissipated by the skin and transmitted by conduction to the sensor, and 2) the power dissipated in the sensor thermostat to maintain the programmed temperature. The outputs are 1) the calorimetric signal and 2) the thermostat temperature. The proposed method consists of a sensor modelling that allows the heat capacity of the element where dissipation takes place (the skin) to be identified, and the transfer functions (TF) that link the inputs and outputs are constructed from its value. These TFs allow the determination of the heat flow dissipated by the surface of the human body as a function of the temperature of the sensor thermostat. Furthermore, as this variation in heat flow is linear, we define and determine an equivalent thermal resistance of the skin in the measured area. The method is validated with a simulation and with experimental measurements on the surface of the human body.


Assuntos
Regulação da Temperatura Corporal , Calorimetria/instrumentação , Temperatura Alta , Temperatura Cutânea , Adulto , Humanos , Masculino , Pessoa de Meia-Idade
14.
Sensors (Basel) ; 20(23)2020 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-33291409

RESUMO

The primary treatment for malignant brain tumors is surgical resection. While gross total resection improves the prognosis, a supratotal resection may result in neurological deficits. On the other hand, accurate intraoperative identification of the tumor boundaries may be very difficult, resulting in subtotal resections. Histological examination of biopsies can be used repeatedly to help achieve gross total resection but this is not practically feasible due to the turn-around time of the tissue analysis. Therefore, intraoperative techniques to recognize tissue types are investigated to expedite the clinical workflow for tumor resection and improve outcome by aiding in the identification and removal of the malignant lesion. Hyperspectral imaging (HSI) is an optical imaging technique with the power of extracting additional information from the imaged tissue. Because HSI images cannot be visually assessed by human observers, we instead exploit artificial intelligence techniques and leverage a Convolutional Neural Network (CNN) to investigate the potential of HSI in twelve in vivo specimens. The proposed framework consists of a 3D-2D hybrid CNN-based approach to create a joint extraction of spectral and spatial information from hyperspectral images. A comparison study was conducted exploiting a 2D CNN, a 1D DNN and two conventional classification methods (SVM, and the SVM classifier combined with the 3D-2D hybrid CNN) to validate the proposed network. An overall accuracy of 80% was found when tumor, healthy tissue and blood vessels were classified, clearly outperforming the state-of-the-art approaches. These results can serve as a basis for brain tumor classification using HSI, and may open future avenues for image-guided neurosurgical applications.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Inteligência Artificial , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/cirurgia , Glioblastoma/diagnóstico por imagem , Glioblastoma/cirurgia , Humanos , Imageamento Hiperespectral , Redes Neurais de Computação
15.
Sensors (Basel) ; 19(4)2019 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-30813245

RESUMO

The main goal of brain cancer surgery is to perform an accurate resection of the tumor, preserving as much normal brain tissue as possible for the patient. The development of a non-contact and label-free method to provide reliable support for tumor resection in real-time during neurosurgical procedures is a current clinical need. Hyperspectral imaging is a non-contact, non-ionizing, and label-free imaging modality that can assist surgeons during this challenging task without using any contrast agent. In this work, we present a deep learning-based framework for processing hyperspectral images of in vivo human brain tissue. The proposed framework was evaluated by our human image database, which includes 26 in vivo hyperspectral cubes from 16 different patients, among which 258,810 pixels were labeled. The proposed framework is able to generate a thematic map where the parenchymal area of the brain is delineated and the location of the tumor is identified, providing guidance to the operating surgeon for a successful and precise tumor resection. The deep learning pipeline achieves an overall accuracy of 80% for multiclass classification, improving the results obtained with traditional support vector machine (SVM)-based approaches. In addition, an aid visualization system is presented, where the final thematic map can be adjusted by the operating surgeon to find the optimal classification threshold for the current situation during the surgical procedure.


Assuntos
Aprendizado Profundo , Glioblastoma/diagnóstico por imagem , Algoritmos , Encéfalo/diagnóstico por imagem , Biologia Computacional , Humanos , Processamento de Imagem Assistida por Computador , Medicina de Precisão , Máquina de Vetores de Suporte
16.
Sensors (Basel) ; 19(24)2019 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-31842410

RESUMO

Hyperspectral imaging (HSI) is a non-ionizing and non-contact imaging technique capable of obtaining more information than conventional RGB (red green blue) imaging. In the medical field, HSI has commonly been investigated due to its great potential for diagnostic and surgical guidance purposes. However, the large amount of information provided by HSI normally contains redundant or non-relevant information, and it is extremely important to identify the most relevant wavelengths for a certain application in order to improve the accuracy of the predictions and reduce the execution time of the classification algorithm. Additionally, some wavelengths can contain noise and removing such bands can improve the classification stage. The work presented in this paper aims to identify such relevant spectral ranges in the visual-and-near-infrared (VNIR) region for an accurate detection of brain cancer using in vivo hyperspectral images. A methodology based on optimization algorithms has been proposed for this task, identifying the relevant wavelengths to achieve the best accuracy in the classification results obtained by a supervised classifier (support vector machines), and employing the lowest possible number of spectral bands. The results demonstrate that the proposed methodology based on the genetic algorithm optimization slightly improves the accuracy of the tumor identification in ~5%, using only 48 bands, with respect to the reference results obtained with 128 bands, offering the possibility of developing customized acquisition sensors that could provide real-time HS imaging. The most relevant spectral ranges found comprise between 440.5-465.96 nm, 498.71-509.62 nm, 556.91-575.1 nm, 593.29-615.12 nm, 636.94-666.05 nm, 698.79-731.53 nm and 884.32-902.51 nm.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Diagnóstico por Imagem/métodos , Processamento de Imagem Assistida por Computador , Encéfalo/patologia , Neoplasias Encefálicas/patologia , Humanos , Espectroscopia de Luz Próxima ao Infravermelho , Máquina de Vetores de Suporte
17.
Sensors (Basel) ; 18(12)2018 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-30567396

RESUMO

The work presented in this paper is focused on the use of spectroscopy to identify the type of tissue of human brain samples employing support vector machine classifiers. Two different spectrometers were used to acquire infrared spectroscopic signatures in the wavenumber range between 1200⁻3500 cm-1. An extensive analysis was performed to find the optimal configuration for a support vector machine classifier and determine the most relevant regions of the spectra for this particular application. The results demonstrate that the developed algorithm is robust enough to classify the infrared spectroscopic data of human brain tissue at three different discrimination levels.


Assuntos
Neoplasias Encefálicas/diagnóstico , Máquina de Vetores de Suporte , Humanos , Sensibilidade e Especificidade , Espectrofotometria Infravermelho
18.
Sensors (Basel) ; 18(7)2018 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-30018216

RESUMO

The use of hyperspectral imaging (HSI) in the medical field is an emerging approach to assist physicians in diagnostic or surgical guidance tasks. However, HSI data processing involves very high computational requirements due to the huge amount of information captured by the sensors. One of the stages with higher computational load is the K-Nearest Neighbors (KNN) filtering algorithm. The main goal of this study is to optimize and parallelize the KNN algorithm by exploiting the GPU technology to obtain real-time processing during brain cancer surgical procedures. This parallel version of the KNN performs the neighbor filtering of a classification map (obtained from a supervised classifier), evaluating the different classes simultaneously. The undertaken optimizations and the computational capabilities of the GPU device throw a speedup up to 66.18× when compared to a sequential implementation.


Assuntos
Algoritmos , Neoplasias Encefálicas/classificação , Neoplasias Encefálicas/diagnóstico por imagem , Sistemas Computacionais , Encéfalo , Análise por Conglomerados , Humanos
19.
Sensors (Basel) ; 18(2)2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29389893

RESUMO

Hyperspectral imaging (HSI) allows for the acquisition of large numbers of spectral bands throughout the electromagnetic spectrum (within and beyond the visual range) with respect to the surface of scenes captured by sensors. Using this information and a set of complex classification algorithms, it is possible to determine which material or substance is located in each pixel. The work presented in this paper aims to exploit the characteristics of HSI to develop a demonstrator capable of delineating tumor tissue from brain tissue during neurosurgical operations. Improved delineation of tumor boundaries is expected to improve the results of surgery. The developed demonstrator is composed of two hyperspectral cameras covering a spectral range of 400-1700 nm. Furthermore, a hardware accelerator connected to a control unit is used to speed up the hyperspectral brain cancer detection algorithm to achieve processing during the time of surgery. A labeled dataset comprised of more than 300,000 spectral signatures is used as the training dataset for the supervised stage of the classification algorithm. In this preliminary study, thematic maps obtained from a validation database of seven hyperspectral images of in vivo brain tissue captured and processed during neurosurgical operations demonstrate that the system is able to discriminate between normal and tumor tissue in the brain. The results can be provided during the surgical procedure (~1 min), making it a practical system for neurosurgeons to use in the near future to improve excision and potentially improve patient outcomes.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/cirurgia , Monitorização Intraoperatória/métodos , Imagem Óptica , Análise Espectral , Algoritmos , Bases de Dados Factuais , Humanos
20.
Sci Data ; 11(1): 681, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38914542

RESUMO

Hyperspectral (HS) imaging (HSI) technology combines the main features of two existing technologies: imaging and spectroscopy. This allows to analyse simultaneously the morphological and chemical attributes of the objects captured by a HS camera. In recent years, the use of HSI provides valuable insights into the interaction between light and biological tissues, and makes it possible to detect patterns, cells, or biomarkers, thus, being able to identify diseases. This work presents the HistologyHSI-GB dataset, which contains 469 HS images from 13 patients diagnosed with brain tumours, specifically glioblastoma. The slides were stained with haematoxylin and eosin (H&E) and captured using a microscope at 20× power magnification. Skilled histopathologists diagnosed the slides and provided image-level annotations. The dataset was acquired using custom HSI instrumentation, consisting of a microscope equipped with an HS camera covering the spectral range from 400 to 1000 nm.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Imageamento Hiperespectral , Humanos , Glioblastoma/diagnóstico por imagem , Glioblastoma/patologia , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/diagnóstico por imagem , Microscopia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa