Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Glob Chang Biol ; 30(1): e17084, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38273567

RESUMO

Excessive fine sediment (particles <2 mm) deposition in freshwater systems is a pervasive stressor worldwide. However, understanding of ecological response to excess fine sediment in river systems at the global scale is limited. Here, we aim to address whether there is a consistent response to increasing levels of deposited fine sediment by freshwater invertebrates across multiple geographic regions (Australia, Brazil, New Zealand and the UK). Results indicate ecological responses are not globally consistent and are instead dependent on both the region and the facet of invertebrate diversity considered, that is, taxonomic or functional trait structure. Invertebrate communities of Australia were most sensitive to deposited fine sediment, with the greatest rate of change in communities occurring when fine sediment cover was low (below 25% of the reach). Communities in the UK displayed a greater tolerance with most compositional change occurring between 30% and 60% cover. In both New Zealand and Brazil, which included the most heavily sedimented sampled streams, the communities were more tolerant or demonstrated ambiguous responses, likely due to historic environmental filtering of invertebrate communities. We conclude that ecological responses to fine sediment are not generalisable globally and are dependent on landscape filters with regional context and historic land management playing important roles.


Assuntos
Sedimentos Geológicos , Invertebrados , Animais , Invertebrados/fisiologia , Água Doce , Rios , Nova Zelândia , Ecossistema , Biodiversidade , Monitoramento Ambiental
2.
Glob Chang Biol ; 29(2): 355-374, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36131677

RESUMO

Rivers suffer from multiple stressors acting simultaneously on their biota, but the consequences are poorly quantified at the global scale. We evaluated the biological condition of rivers globally, including the largest proportion of countries from the Global South published to date. We gathered macroinvertebrate- and fish-based assessments from 72,275 and 37,676 sites, respectively, from 64 study regions across six continents and 45 nations. Because assessments were based on differing methods, different systems were consolidated into a 3-class system: Good, Impaired, or Severely Impaired, following common guidelines. The proportion of sites in each class by study area was calculated and each region was assigned a Köppen-Geiger climate type, Human Footprint score (addressing landscape alterations), Human Development Index (HDI) score (addressing social welfare), % rivers with good ambient water quality, % protected freshwater key biodiversity areas; and % of forest area net change rate. We found that 50% of macroinvertebrate sites and 42% of fish sites were in Good condition, whereas 21% and 29% were Severely Impaired, respectively. The poorest biological conditions occurred in Arid and Equatorial climates and the best conditions occurred in Snow climates. Severely Impaired conditions were associated (Pearson correlation coefficient) with higher HDI scores, poorer physico-chemical water quality, and lower proportions of protected freshwater areas. Good biological conditions were associated with good water quality and increased forested areas. It is essential to implement statutory bioassessment programs in Asian, African, and South American countries, and continue them in Oceania, Europe, and North America. There is a need to invest in assessments based on fish, as there is less information globally and fish were strong indicators of degradation. Our study highlights a need to increase the extent and number of protected river catchments, preserve and restore natural forested areas in the catchments, treat wastewater discharges, and improve river connectivity.


Assuntos
Ecossistema , Monitoramento Ambiental , Animais , Humanos , Monitoramento Ambiental/métodos , Rios , Peixes , Qualidade da Água , Biodiversidade , Invertebrados
3.
Ecol Indic ; 1152020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34121931

RESUMO

Accurate and precise detection of anthropogenic impacts on stream ecosystems using macroinvertebrates as biological indicators depends on the use of appropriate field and laboratory methods. We assessed the responsiveness to anthropogenic disturbances of assemblage metrics and composition by comparing commonly employed alternative combinations of field sampling and individuals counting methods. Four datasets were derived by, in the field 1) conducting multihabitat sampling (MH) or 2) targeting samples in leaf packs (single-habitat sampling - SH) and, in the laboratory A) counting all individuals of the samples, or B) simulating subsampling of 300 individuals per sample. We collected our data from 39 headwater stream sites in a drainage basin located in the Brazilian Cerrado. We used a previously published quantitative integrated disturbance index (IDI), based on both local and catchment disturbance measurements, to characterize the intensity of anthropogenic alterations at each site. Family richness and % Ephemeroptera, Plecoptera and Trichoptera (% EPT) individuals obtained from each dataset were tested against the IDI through simple linear regressions, and the differences in assemblage composition between least- and most-disturbed sites was tested using Permutational Multivariate Analysis of Variance (PERMANOVA). When counting all individuals, differences in taxonomic richness and assemblage composition of macroinvertebrate assemblages between least- and most-disturbed sites were more pronounced in the MH than in the SH sampling method. Leaf packs seemed to concentrate high abundance and diversity of macroinvertebrates in highly disturbed sites, acting as 'biodiversity hotbeds' in these situations, which likely reduced the response of the assemblages to the disturbance gradient when this substrate was targeted. However, MH sampling produced weaker results than SH when subsampling was performed. The % EPT individuals responded better to the disturbance gradient when SH was employed, and its efficiency was not affected by the subsampling procedure. We conclude that no single method was the best in all situations, and the efficiency of a sampling protocol depends on the combination of field and laboratory methods being used. Although the total count of individuals with multihabitat sampling obtained the best results for most of the evaluated variables, the decision of which procedures to use depends on the amount of time and resources available, on the variables of interest, on the availability of habitat types in the sites sampled, and on the other methods being employed in the sampling protocol.

4.
J Limnol ; 76(2): 240-252, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-30058005

RESUMO

Large reservoirs are an increasingly common feature across tropical landscapes because of their importance for water supply, flood control and hydropower, but their ecological conditions are infrequently evaluated. Our objective was to assess the range of disturbances for two large tropical reservoirs and their influences on benthic macroinvertebrates. We tested three hypotheses: i) a wide variation in the level of environmental disturbance can be observed among sites in the reservoirs; ii) the two reservoirs would exhibit a different degree of disturbance level; and iii) the magnitude of disturbance would influence the structure and composition of benthic assemblages. For each reservoir, we assessed land use (macroscale), physical habitat structure (mesoscale), and water quality (microscale). We sampled 40 sites in the littoral zones of both Três Marias and São Simão Reservoirs (Minas Gerais, Brazil). At the macroscale, we measured cover percentages of land use categories in buffer areas at each site, where each buffer was a circular arc of 250 m. At the mesoscale, we assessed the presence of human disturbances in the riparian and drawdown zones at the local (site) scale. At the microscale, we assessed water quality at each macroinvertebrate sampling station using the Micro Disturbance Index (MDI). To evaluate anthropogenic disturbance of each site, we calculated an integrated disturbance index (IDI) from a buffer disturbance index (BDI) and a local disturbance index (LDI). For each site, we calculated richness and abundance of benthic macroinvertebrates, Chironomidae genera richness, abundance and percent Chironomidae individuals, abundance and percent EPT individuals, richness and percent EPT taxa, abundance and percent resistant individuals, and abundance and percent non-native individuals. We also evaluated the influence of disturbance on benthic macroinvertebrate assemblages at the entire-reservoir scale. The BDI, LDI and IDI had significantly greater average scores at São Simão than at Três Marias Reservoir. The significantly greater differences in IDI scores for São Simão Reservoir were reflected in 10 of the 13 Ekman-Birge dredge biotic metrics and in 5 of 13 of the kick-net biotic metrics. We also observed clear ranges of disturbances within both reservoirs at macro (BDI) and mesoscales (LDI) and in water quality, but an insignificant range in MDI results. However, we found no significant relationship between the benthic macroinvertebrate metrics and the BDI, LDI, and IDI among sites within a single reservoir. Hence, we believe that benthic macroinvertebrate distributions in those reservoirs were influenced by other factors or that reservoir macroinvertebrates (dominated by chironomids) were poor indicators of disturbance at the site scale.

5.
Environ Monit Assess ; 189(2): 65, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28110450

RESUMO

The aim of this study was to develop a statistical model to assess the environmental quality of reservoirs located in semi-arid region using metrics of anthropogenic disturbance, water quality variables, and benthic macroinvertebrate communities as indicators. The proposed model was applied to 60 sites located in three reservoirs in the Paraíba river basin, Brazilian semi-arid region. Collections were made in December 2011. In each site, we collected one sample of benthic macroinvertebrates and one water sample for the determination of physical and chemical parameters. Characterization of the landscape was made through application of 10 physical habitat protocols on each site for the collected information on disturbance and subsequent calculation of disturbance metrics. The results showed the formation of two groups: group 1, consisting of 16 minimally altered sites, and group 2, with 44 severely altered sites. The proposed statistical model was sensitive enough to detect changes. In the minimally altered group, the Chironomids Aedokritus and Fissimentum were dominant, indicating a higher environmental quality, while Coelotanypus and Chironomus were abundant in severely altered sites with lower environmental quality. The conservation and management of reservoirs in semi-arid regions should be intensified in view of the need to maintain the environmental quality of these ecosystems.


Assuntos
Chironomidae/fisiologia , Monitoramento Ambiental/métodos , Modelos Estatísticos , Rios/química , Qualidade da Água , Animais , Brasil , Ecossistema
6.
Proc Biol Sci ; 283(1829)2016 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-27122551

RESUMO

Plant litter breakdown is a key ecological process in terrestrial and freshwater ecosystems. Streams and rivers, in particular, contribute substantially to global carbon fluxes. However, there is little information available on the relative roles of different drivers of plant litter breakdown in fresh waters, particularly at large scales. We present a global-scale study of litter breakdown in streams to compare the roles of biotic, climatic and other environmental factors on breakdown rates. We conducted an experiment in 24 streams encompassing latitudes from 47.8° N to 42.8° S, using litter mixtures of local species differing in quality and phylogenetic diversity (PD), and alder (Alnus glutinosa) to control for variation in litter traits. Our models revealed that breakdown of alder was driven by climate, with some influence of pH, whereas variation in breakdown of litter mixtures was explained mainly by litter quality and PD. Effects of litter quality and PD and stream pH were more positive at higher temperatures, indicating that different mechanisms may operate at different latitudes. These results reflect global variability caused by multiple factors, but unexplained variance points to the need for expanded global-scale comparisons.


Assuntos
Biodegradação Ambiental , Plantas , Rios , Biodiversidade , Biota , Ciclo do Carbono , Clima , Ecossistema , Concentração de Íons de Hidrogênio , Filogenia
7.
Environ Monit Assess ; 188(6): 340, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27165604

RESUMO

Taxonomic richness is one of the most important measures of biological diversity in ecological studies, including those with stream macroinvertebrates. However, it is impractical to measure the true richness of any site directly by sampling. Our objective was to evaluate the effect of sampling effort on estimates of macroinvertebrate family and Ephemeroptera, Plecoptera, and Trichoptera (EPT) genera richness at two scales: basin and stream site. In addition, we tried to determine which environmental factors at the site scale most influenced the amount of sampling effort needed. We sampled 39 sites in the Cerrado biome (neotropical savanna). In each site, we obtained 11 equidistant samples of the benthic assemblage and multiple physical habitat measurements. The observed basin-scale richness achieved a consistent estimation from Chao 1, Jack 1, and Jack 2 richness estimators. However, at the site scale, there was a constant increase in the observed number of taxa with increased number of samples. Models that best explained the slope of site-scale sampling curves (representing the necessity of greater sampling effort) included metrics that describe habitat heterogeneity, habitat structure, anthropogenic disturbance, and water quality, for both macroinvertebrate family and EPT genera richness. Our results demonstrate the importance of considering basin- and site-scale sampling effort in ecological surveys and that taxa accumulation curves and richness estimators are good tools for assessing sampling efficiency. The physical habitat explained a significant amount of the sampling effort needed. Therefore, future studies should explore the possible implications of physical habitat characteristics when developing sampling objectives, study designs, and calculating the needed sampling effort.


Assuntos
Biodiversidade , Monitoramento Ambiental/métodos , Insetos/classificação , Animais , Ecologia/métodos , Ecossistema , Rios , Qualidade da Água
8.
Environ Monit Assess ; 186(9): 5479-88, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24816540

RESUMO

Mesohabitat components such as substrate and surface flow types are intimately related to benthic macroinvertebrate assemblages in streams. Visual assessments of the distribution of these components provide a means of evaluating physical habitat heterogeneity and aid biodiversity surveys and monitoring. We determined the degree to which stream site and visually assessed mesohabitat variables explain variability (i.e., beta-diversity) in the relative abundance and presence-absence of all macroinvertebrate families and of Ephemeroptera, Plecoptera, and Trichoptera (EPT) genera. We systematically sampled a wide variety of mesohabitat arrangements as they occured in stream sites. We also estimated how much of the explanation given by mesohabitat was associated with substrate or surface flow types. We performed variation partitioning to determine fractions of explained variance through use of partial redundancy analysis (pRDA). Mesohabitats and stream sites explained together from 23 to 32% of the variation in the four analyses. Stream site explained 8-11% of that variation, and mesohabitat variables explained 13-20%. Surface flow types accounted for >60% of the variation provided by the mesohabitat component. These patterns are in accordance with those obtained in previous studies that showed the predominance of environmental variables over spatial location in explaining macroinvertebrate distribution. We conclude that visually assessed mesohabitat components are important predictors of assemblage composition, explaining significant amounts of beta-diversity. Therefore, they are critical to consider in ecological and biodiversity assessments involving macroinvertebrates.


Assuntos
Ecossistema , Monitoramento Ambiental/métodos , Invertebrados/crescimento & desenvolvimento , Rios/química , Animais , Biodiversidade , Ecologia , Invertebrados/classificação
9.
Sci Total Environ ; 926: 171935, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38527547

RESUMO

Urban streams are affected by a complex combination of stressors, which modify physical habitat structure, flow regime, water quality, biological community composition, and ecosystem processes and services, thereby altering ecosystem structure and functioning. Rehabilitation projects have been undertaken in several countries to rehabilitate urban streams. However, stream rehabilitation is still rarely reported for neotropical regions. In addition, most studies focus on structural aspects, such as water quality, sediment control, and flood events, without considering ecosystem function indicators. Here, we evaluated the structure and functioning of three 15-y old rehabilitated urban stream sites in comparison with three stream sites in the best available ecological condition (reference), three sites with moderate habitat alteration, and three severely degraded sites. Compared to degraded streams, rehabilitated streams had higher habitat diversity, sensitive macroinvertebrate taxa richness, and biotic index scores, and lower biochemical oxygen demand, primary production, sediment deposition, and siltation. However, rehabilitated streams had higher primary production than moderate and reference streams, and lower canopy cover, habitat diversity, sensitive macroinvertebrate taxa richness, and biotic index scores than reference streams. These results indicate that rehabilitated streams have better structural and functional condition than degraded streams, but do not strongly differ from moderately altered streams, nor have they reached reference stream condition. Nonetheless, we conclude that rehabilitation is effective in removing streams from a degraded state by improving ecosystem structure and functioning. Furthermore, the combined use of functional and structural indicators facilitated an integrative assessment of stream ecological condition and distinguished stream conditions beyond those based on water quality indicators.


Assuntos
Ecossistema , Invertebrados , Animais , Qualidade da Água , Biota , Monitoramento Ambiental
10.
Philos Trans R Soc Lond B Biol Sci ; 379(1904): 20230102, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38705182

RESUMO

Insect monitoring is pivotal for assessing biodiversity and informing conservation strategies. This study delves into the complex realm of insect monitoring in the Global South-world developing and least-developed countries as identified by the United Nations Conference on Trade and Development-highlighting challenges and proposing strategic solutions. An analysis of publications from 1990 to 2024 reveals an imbalance in research contributions between the Global North and South, highlighting disparities in entomological research and the scarcity of taxonomic expertise in the Global South. We discuss the socio-economic factors that exacerbate the issues, including funding disparities, challenges in collaboration, infrastructure deficits, information technology obstacles and the impact of local currency devaluation. In addition, we emphasize the crucial role of environmental factors in shaping insect diversity, particularly in tropical regions facing multiple challenges including climate change, urbanization, pollution and various anthropogenic activities. We also stress the need for entomologists to advocate for ecosystem services provided by insects in addressing environmental issues. To enhance monitoring capacity, we propose strategies such as community engagement, outreach programmes and cultural activities to instill biodiversity appreciation. Further, language inclusivity and social media use are emphasized for effective communication. More collaborations with Global North counterparts, particularly in areas of molecular biology and remote sensing, are suggested for technological advancements. In conclusion, advocating for these strategies-global collaborations, a diverse entomological community and the integration of transverse disciplines-aims to address challenges and foster inclusive, sustainable insect monitoring in the Global South, contributing significantly to biodiversity conservation and overall ecosystem health. This article is part of the theme issue 'Towards a toolkit for global insect biodiversity monitoring'.


Assuntos
Biodiversidade , Insetos , Insetos/fisiologia , Animais , Conservação dos Recursos Naturais/métodos , Monitoramento Ambiental/métodos , Países em Desenvolvimento , Entomologia/métodos , Ecossistema , Mudança Climática
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa