Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Water Sci Technol ; 2017(3): 903-912, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30016308

RESUMO

Empirical mathematical models have been frequently used to estimate emissions and to act in the prevention of possible impacts from odorous compounds. Based on the regulatory WATER9 model, the present study had the aim to evaluate the deviations originating from the simplification of using the effective diameter (in contrast to the conceptually appropriate use of the linear physical fetch) as fetch parameter in the calculation of the global mass transfer coefficient at passive liquid surfaces at wastewater treatment plants (WWTPs). The present analysis incorporated the influence of different values of wind velocity, molecular diffusivity and Henry's Law constant. The analyses for the calculation of the mass transfer coefficients were developed for 1,000 wind speeds, chosen using the Monte Carlo method, three WWTPs and three compounds of environmental relevance, spanning different behaviour regarding their volatilisation. The wind speed had a direct influence on the deviations for all types of compounds analysed. However, this parameter was found to be more representative for the compounds whose volatilisation is limited by conditions in the liquid phase. Furthermore, the deviations for the calculation of the mass transfer coefficient arising from the use of the effective diameter as fetch parameter were significantly larger for liquid phase-dominated compounds, compared to gas phase-dominated compounds. Comparison against available experimental data confirm that the use of the effective diameter as the fetch parameter makes the model predictions further depart from the experimental values. The present analysis shows that, for a varied range of wind speed and WWTP configurations, the use of the actual physical fetch shall be preferred over the use of the effective diameter in emission models for WWTPs, so as to avoid the introduction of potentially large systematic deviations.


Assuntos
Modelos Teóricos , Odorantes/análise , Águas Residuárias/química , Simulação por Computador , Volatilização , Instalações de Eliminação de Resíduos , Vento
2.
Water Sci Technol ; 74(10): 2384-2391, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27858794

RESUMO

Passive liquid surfaces in wastewater treatment plants may be potential sources of odorous emissions. This study investigates the occurrence and significance of deviations that may originate from the use of the effective diameter as fetch parameter in the empirical correlations utilised by the WATER9 model to estimate odorous emissions at passive liquid surfaces. A sensitivity analysis was performed using benzene as a model compound and considering representative conditions of wind speed and wind alignment. The gas-film mass transfer coefficient (kG) was found relatively in sensitive to the choice of the fetch parameter, deviating less than 15% for aspect rations up to 15. The calculation of the liquid-film mass transfer coefficient (kL) was much more sensitive (positive extreme of 126.98% and negative extreme of -54.80%), partially because of the use of different equations for different fetch-to-depth ratios. For more volatile compounds, such as benzene, these discrepancies will be significantly manifested in the estimated emission rate. When appropriate, the use of the actual fetch instead of the effective diameter is recommended.


Assuntos
Poluentes Atmosféricos/análise , Benzeno/análise , Modelos Teóricos , Odorantes/análise , Poluentes Químicos da Água/análise , Eliminação de Resíduos Líquidos , Vento
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa