Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
BMC Genomics ; 23(1): 282, 2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35395723

RESUMO

BACKGROUND: Bees are the most important group of pollinators worldwide and their populations are declining. In natural conditions, Apis mellifera depends exclusively on food from the field to meet its physiological demands. In the period of scarcity, available resources are insufficient and artificial supplementation becomes essential for maintaining the levels of vitamins, proteins, carbohydrates, and minerals of colonies. Among these minerals, zinc is essential in all living systems, particularly for the regulation of cell division and protein synthesis, and is a component of more than 200 metalloenzymes. RESULTS: The total RNA extracted from the brain tissue of nurse bees exposed to different sources and concentrations of zinc was sequenced. A total of 1,172 genes in the treatment that received an inorganic source of zinc and 502 genes that received an organic source of zinc were found to be differentially expressed among the control group. Gene ontology enrichment showed that zinc can modulate important biological processes such as nutrient metabolism and the molting process. CONCLUSIONS: Our results indicate that zinc supplementation modulates the expression of many differentially expressed genes and plays an important role in the development of Apis mellifera bees. All the information obtained in this study can contribute to future research in the field of bee nutrigenomics.


Assuntos
Transcriptoma , Zinco , Animais , Abelhas/genética , Encéfalo , Suplementos Nutricionais , Nutrigenômica , Zinco/farmacologia
2.
Biol Trace Elem Res ; 199(11): 4308-4318, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33398653

RESUMO

This study aimed to evaluate the quality of royal jelly produced by honeybees Apis mellifera supplemented with different concentrations of inorganic zinc (zinc sulfate monohydrate-0, 25, 50, and 75 ppm). Two-dimensional electrophoresis for the fractionation of royal jelly proteins was performed, and the zinc level was quantified by the flame atomic absorption spectrometry (FAAS) technique. Proteins were identified by electrospray ionization mass spectrometry (ESI MS MS). Analysis of variance followed by the Tukey test (P < 0.05) was used. Supplementation with the mineral zinc positively affected the quantification of proteins for treatments 50 and 75 ppm. However, all treatments independent of zinc concentrations showed fewer protein spots when compared to the control. All zinc-containing proteins were classified as major royal jelly proteins (MRJPs). The exposure of nursing bees to the mineral zinc in its inorganic form reduced the expression of six different MRJPs involved in larval and glands development of nursing bees (MRJP1, MRJP2, MRJP3, MRJP5, and MRJP7), however promoted an increase in the expression of royal jelly proteins involved in defense systems (MRJP8 and MRJP9). The results demonstrate that vital proteins and metabolic processes are impaired in nursing bees exposed to the mineral zinc in its inorganic form in all doses used affecting nutrition and maintenance of colonies.


Assuntos
Proteínas de Insetos , Zinco , Animais , Abelhas , Suplementos Nutricionais , Ácidos Graxos , Zinco/farmacologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa