RESUMO
We exploited the potential of radiation-induced emissions (RIEs) in the visible domain of a nitrogen-doped, silica-based, multimode optical fiber to monitor the very high dose rates associated with experiments at different pulsed X-ray facilities. We also tested this sensor at lower dose rates associated with steady-state X-ray irradiation machines (up to 100 keV photon energy, mean energy of 40 keV). For transient exposures, dedicated experimental campaigns were performed at ELSA (Electron et Laser, Source X et Applications) and ASTERIX facilities from CEA (Commissariat à l'Energie Atomique-France) to characterize the RIE of this fiber when exposed to X-ray pulses with durations of a few µs or ns. These facilities provide very large dose rates: in the order of MGy(SiO2)/s for the ELSA facility (up to 19 MeV photon energy) and GGy(SiO2)/s for the ASTERIX facility (up to 1 MeV). In both cases, the RIE intensities, mostly explained by the fiber radioluminescence (RIL) around 550 nm, with a contribution from Cerenkov at higher fluxes, linearly depend on the dose rates normalized to the pulse duration delivered by the facilities. By comparing these high dose rate results and those acquired under low-dose rate steady-state X-rays (only RIL was present), we showed that the RIE of this multimode optical fiber linearly depends on the dose rate over an ultra-wide dose rate range from 10-2 Gy(SiO2)/s to a few 109 Gy(SiO2)/s and photons with energy in the range from 40 keV to 19 MeV. These results demonstrate the high potential of this class of radiation monitors for beam monitoring at very high dose rates in a very large variety of facilities as future FLASH therapy facilities.
Assuntos
Fibras Ópticas , Radiometria , Nitrogênio , Radiometria/métodos , Dióxido de Silício , Raios XRESUMO
We demonstrate the feasibility of resetting and reusing dosimeters exploiting the measurement of the infrared radiation-induced attenuation (IR-RIA) in phosphosilicate optical fibers (OFs) to provide point or distributed dose measurements in radiation environments. To bleach the room temperature stable IR-RIA, we used the photobleaching (PB) phenomenon. The PB efficiency was evaluated for different wavelengths in the [400-1100] nm range. The best identified PB resetting condition consists in using a continuous-wave Argon-ion laser at 514 nm. This treatment successfully bleached â¼97% of the IR-RIA at 1550 nm of a 30 m-long P-doped single mode optical fiber X-ray irradiated at a dose of 100 Gy. Successive re-irradiations of the same OF sample, regenerated after each run, confirm that the dosimeter keeps the same calibration curve during the whole process.
RESUMO
We report here the response of a commercial ultra-low loss (ULL) single-mode (SM) pure silica core (PSC) fiber, the Vascade EX1000 fiber from Corning, associated with 0.16 dB/km losses at 1.55 µm to 40 keV X-rays at room temperature. Today, among all fiber types, the PSC or F-doped ones have been demonstrated to be the most tolerant to the radiation induced attenuation (RIA) phenomenon and are usually used to design radiation-hardened data links or fiber-based point or distributed sensors. The here investigated ULL-PSC showed, instead, surprisingly high RIA levels of ~3000 dB/km at 1310 nm and ~2000 dB/km at 1550 nm at a limited dose of 2 kGy(SiO2), exceeding the RIA measured in the P-doped SM fibers used for dosimetry for doses of ~500 Gy. Moreover, its RIA increased as a function of the dose with a saturation tendency at larger doses and quickly recovered after irradiation. Our study on the silica structure suggests that the very specific manufacturing process of the ULL-PSC fibers applied to reduce their intrinsic attenuation makes them highly vulnerable to radiations even at low doses. From the application point of view, this fiber cannot be used for data transfer or sensing in harsh environments, except as a very efficient radiation detector or beam monitor.
RESUMO
The potential of fiber-based sensors to monitor the fluence of atmospheric neutrons is evaluated through accelerated tests at the TRIUMF Neutron Facility (TNF) (BC, Canada), offering a flux approximatively 109 higher than the reference spectrum observed under standard conditions in New York City, USA. The radiation-induced attenuation (RIA) at 1625 nm of a phosphorus-doped radiation sensitive optical fiber is shown to linearly increase with neutron fluence, allowing an in situ and easy monitoring of the neutron flux and fluence at this facility. Furthermore, our experiments show that the fiber response remains sensitive to the ionization processes, at least up to a fluence of 7.1 × 1011 n cm-², as its radiation sensitivity coefficient (~3.36 dB km-1 Gy-1) under neutron exposure remains very similar to the one measured under X-rays (~3.8 dB km-1 Gy-1) at the same wavelength. The presented results open the way to the development of a point-like or even a distributed dosimeter for natural or man-made neutron-rich environments. The feasibility to measure the dose caused by the neutron exposure during stratospheric balloon experiments, or during outer space missions, is presented as a case study of a potential future application.
RESUMO
In the present paper, we investigate how the optical and structural properties, in particular the observed photoluminescence (PL) of photocurable and organic-inorganic TiO2-SiO2 sol-gel films doped with Rhodamine 6G (R6G) are affected by γ-rays. For this, four luminescent films, firstly polymerized with UV photons (365 nm), were submitted to different accumulated doses of 50 kGy, 200 kGy, 500 kGy and 1 MGy while one sample was kept as a reference and unirradiated. The PL, recorded under excitations at 365 nm, 442 nm and 488 nm clearly evidences that a strong signal peaking at 564 nm is still largely present in the γ-irradiated samples. In addition, M-lines and Fourier-transform infrared (FTIR) spectroscopies are used to quantify the radiation induced refractive index variation and the chemical changes, respectively. Results show that a refractive index decrease of 7 × 10-3 at 633 nm is achieved at a 1 MGy accumulated dose while a photo-induced polymerization occurs, related to the consumption of CH=C, Si-OH and Si-O-CH3 groups to form Ti-O and Si-O bonds. All these results confirm that the host matrix (TiO2-SiO2) and R6G fluorophores successfully withstand the hard γ-ray exposure, opening the way to the use of this material for sensing applications in radiation-rich environments.