Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(14): e2116708119, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35357971

RESUMO

Iron surface determinant B (IsdB) is a hemoglobin (Hb) receptor essential for hemic iron acquisition by Staphylococcus aureus. Heme transfer to IsdB is possible from oxidized Hb (metHb), but inefficient from Hb either bound to oxygen (oxyHb) or bound to carbon monoxide (HbCO), and encompasses a sequence of structural events that are currently poorly understood. By single-particle cryo-electron microscopy, we determined the structure of two IsdB:Hb complexes, representing key species along the heme extraction pathway. The IsdB:HbCO structure, at 2.9-Å resolution, provides a snapshot of the preextraction complex. In this early stage of IsdB:Hb interaction, the hemophore binds to the ß-subunits of the Hb tetramer, exploiting a folding-upon-binding mechanism that is likely triggered by a cis/trans isomerization of Pro173. Binding of IsdB to α-subunits occurs upon dissociation of the Hb tetramer into α/ß dimers. The structure of the IsdB:metHb complex reveals the final step of the extraction process, where heme transfer to IsdB is completed. The stability of the complex, both before and after heme transfer from Hb to IsdB, is influenced by isomerization of Pro173. These results greatly enhance current understanding of structural and dynamic aspects of the heme extraction mechanism by IsdB and provide insight into the interactions that stabilize the complex before the heme transfer event. This information will support future efforts to identify inhibitors of heme acquisition by S. aureus by interfering with IsdB:Hb complex formation.


Assuntos
Proteínas de Transporte de Cátions , Heme , Hemoglobinas , Proteínas de Transporte de Cátions/química , Microscopia Crioeletrônica , Heme/química , Hemoglobinas/química , Humanos , Ferro/metabolismo
2.
Mol Cell Proteomics ; 20: 100098, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34022432

RESUMO

CysE and CysK, the last two enzymes of the cysteine biosynthetic pathway, engage in a bienzyme complex, cysteine synthase, with yet incompletely characterized three-dimensional structure and regulatory function. Being absent in mammals, the two enzymes and their complex are attractive targets for antibacterial drugs. We have used hydrogen/deuterium exchange MS to unveil how complex formation affects the conformational dynamics of CysK and CysE. Our results support a model where CysE is present in solution as a dimer of trimers, and each trimer can bind one CysK homodimer. When CysK binds to one CysE monomer, intratrimer allosteric communication ensures conformational and dynamic symmetry within the trimer. Furthermore, a long-range allosteric signal propagates through CysE to induce stabilization of the interface between the two CysE trimers, preparing the second trimer for binding the second CysK with a nonrandom orientation. These results provide new molecular insights into the allosteric formation of the cysteine synthase complex and could help guide antibacterial drug design.


Assuntos
Cisteína Sintase/química , Cromatografia Líquida , Deutério , Medição da Troca de Deutério , Hidrogênio , Espectrometria de Massas
3.
Int J Mol Sci ; 23(9)2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35563349

RESUMO

Human serine racemase (hSR) is a pyridoxal-5'-phosphate (PLP)-dependent dimer that catalyzes the formation of D-serine from L-serine, as well as the dehydration of both L- and D-serine to pyruvate and ammonia. As D-serine is a co-agonist of N-methyl-D-aspartate receptors (NMDARs), hSR is a key enzyme in glutamatergic neurotransmission. hSR activity is finely regulated by Mg2+, ATP, post-translational modifications, and the interaction with protein partners. In particular, the C-terminus of murine SR binds the third PDZ domain (PDZ3) of postsynaptic density protein 95 (PSD-95), a member of the membrane-associated guanylate kinase (MAGUK) family involved in the trafficking and localization of glutamate receptors. The structural details of the interaction and the stability of the complex have not been elucidated yet. We evaluated the binding of recombinant human PSD-95 PDZ3 to hSR by glutaraldehyde cross-linking, pull-down assays, isothermal titration calorimetry, nuclear magnetic resonance, and enzymatic assays. Overall, a weak interaction was observed, confirming the binding for the human orthologs but supporting the hypothesis that a third protein partner (i.e., stargazin) is required for the regulation of hSR activity by PSD-95 and to stabilize their interaction.


Assuntos
Proteína 4 Homóloga a Disks-Large , Domínios PDZ , Racemases e Epimerases , Proteína 4 Homóloga a Disks-Large/química , Proteína 4 Homóloga a Disks-Large/metabolismo , Guanilato Quinases/genética , Guanilato Quinases/metabolismo , Humanos , Racemases e Epimerases/química , Racemases e Epimerases/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Serina
4.
Anal Biochem ; 593: 113595, 2020 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-31987861

RESUMO

Steady-state enzyme kinetics typically relies on the measurement of 'initial rates', obtained when the substrate is not significantly consumed and the amount of product formed is negligible. Although initial rates are usually faster than those measured later in the reaction time-course, sometimes the speed of the reaction appears instead to increase with time, reaching a steady level only after an initial delay or 'lag phase'. This behavior needs to be interpreted by the experimentalists. To assist interpretation, this article analyzes the many reasons why, during an enzyme assay, the observed rate can be slow in the beginning and then progressively accelerate. The possible causes range from trivial artifacts to instances in which deeper mechanistic or biophysical factors are at play. We provide practical examples for most of these causes, based firstly on experiments conducted with ornithine δ-aminotransferase and with other pyridoxal-phosphate dependent enzymes that have been studied in our laboratory. On the side to this survey, we provide evidence that the product of the ornithine δ-aminotransferase reaction, glutamate 5-semialdehyde, cyclizes spontaneously to pyrroline 5-carboxylate with a rate constant greater than 3 s-1.


Assuntos
Ensaios Enzimáticos/métodos , Enzimas/química , Artefatos , Cinética , Ornitina-Oxo-Ácido Transaminase/química , Especificidade por Substrato
5.
Int J Mol Sci ; 21(6)2020 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-32245010

RESUMO

Nutritional immunity is a form of innate immunity widespread in both vertebrates and invertebrates. The term refers to a rich repertoire of mechanisms set up by the host to inhibit bacterial proliferation by sequestering trace minerals (mainly iron, but also zinc and manganese). This strategy, selected by evolution, represents an effective front-line defense against pathogens and has thus inspired the exploitation of iron restriction in the development of innovative antimicrobials or enhancers of antimicrobial therapy. This review focuses on the mechanisms of nutritional immunity, the strategies adopted by opportunistic human pathogen Staphylococcus aureus to circumvent it, and the impact of deletion mutants on the fitness, infectivity, and persistence inside the host. This information finally converges in an overview of the current development of inhibitors targeting the different stages of iron uptake, an as-yet unexploited target in the field of antistaphylococcal drug discovery.


Assuntos
Antibacterianos/farmacologia , Interações Hospedeiro-Patógeno , Imunidade , Ferro/metabolismo , Fenômenos Fisiológicos da Nutrição , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Imunidade/efeitos dos fármacos , Virulência/efeitos dos fármacos
6.
J Enzyme Inhib Med Chem ; 34(1): 31-43, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30362368

RESUMO

The lack of efficacy of current antibacterials to treat multidrug resistant bacteria poses a life-threatening alarm. In order to develop enhancers of the antibacterial activity, we carried out a medicinal chemistry campaign aiming to develop inhibitors of enzymes that synthesise cysteine and belong to the reductive sulphur assimilation pathway, absent in mammals. Previous studies have provided a novel series of inhibitors for O-acetylsulfhydrylase - a key enzyme involved in cysteine biosynthesis. Despite displaying nanomolar affinity, the most active representative of the series was not able to interfere with bacterial growth, likely due to poor permeability. Therefore, we rationally modified the structure of the hit compound with the aim of promoting their passage through the outer cell membrane porins. The new series was evaluated on the recombinant enzyme from Salmonella enterica serovar Typhimurium, with several compounds able to keep nanomolar binding affinity despite the extent of chemical manipulation.


Assuntos
Antibacterianos/farmacologia , Ácidos Carboxílicos/farmacologia , Ciclopropanos/farmacologia , Cisteína Sintase/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Ácidos Carboxílicos/síntese química , Ácidos Carboxílicos/química , Ciclopropanos/síntese química , Ciclopropanos/química , Cisteína Sintase/metabolismo , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Escherichia coli/efeitos dos fármacos , Isoenzimas/antagonistas & inibidores , Isoenzimas/metabolismo , Testes de Sensibilidade Microbiana , Estrutura Molecular , Salmonella typhimurium/enzimologia , Relação Estrutura-Atividade
7.
Int J Mol Sci ; 20(20)2019 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-31640223

RESUMO

The formation of multienzymatic complexes allows for the fine tuning of many aspects of enzymatic functions, such as efficiency, localization, stability, and moonlighting. Here, we investigated, in solution, the structure of bacterial cysteine synthase (CS) complex. CS is formed by serine acetyltransferase (CysE) and O-acetylserine sulfhydrylase isozyme A (CysK), the enzymes that catalyze the last two steps of cysteine biosynthesis in bacteria. CysK and CysE have been proposed as potential targets for antibiotics, since cysteine and related metabolites are intimately linked to protection of bacterial cells against redox damage and to antibiotic resistance. We applied a combined approach of small-angle X-ray scattering (SAXS) spectroscopy and protein painting to obtain a model for the solution structure of CS. Protein painting allowed the identification of protein-protein interaction hotspots that were then used as constrains to model the CS quaternary assembly inside the SAXS envelope. We demonstrate that the active site entrance of CysK is involved in complex formation, as suggested by site-directed mutagenesis and functional studies. Furthermore, complex formation involves a conformational change in one CysK subunit that is likely transmitted through the dimer interface to the other subunit, with a regulatory effect. Finally, SAXS data indicate that only one active site of CysK is involved in direct interaction with CysE and unambiguously unveil the quaternary arrangement of CS.


Assuntos
Bactérias/enzimologia , Cisteína Sintase/química , Cisteína Sintase/metabolismo , Serina O-Acetiltransferase/química , Serina O-Acetiltransferase/metabolismo , Bactérias/química , Bactérias/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Cisteína Sintase/genética , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Modelos Moleculares , Complexos Multienzimáticos/química , Complexos Multienzimáticos/genética , Mutagênese Sítio-Dirigida , Mapas de Interação de Proteínas , Espalhamento a Baixo Ângulo , Serina O-Acetiltransferase/genética , Difração de Raios X
8.
Biochim Biophys Acta Proteins Proteom ; 1866(7): 813-821, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29410194

RESUMO

Serine racemase is a pyridoxal 5'­phosphate dependent enzyme responsible for the synthesis of d­serine, a neuromodulator of the NMDA receptors. Its activity is modulated by several ligands, including ATP, divalent cations and protein interactors. The murine orthologue is inhibited by S-nitrosylation at Cys113, a residue adjacent to the ATP binding site. We found that the time course of inhibition of human serine racemase by S-nitrosylation is markedly biphasic, with a fast phase associated with the reaction of Cys113. Unlike the murine enzyme, two additional cysteine residues, Cys269, unique to the human orthologue, and Cys128 were also recognized as S-nitrosylation sites through mass spectrometry and site-directed mutagenesis. The effect of S-nitrosylation on the fluorescence of tryptophan residues and on that of the pyridoxal phosphate cofactor indicated that S-nitrosylation produces a partial interruption of the cross-talk between the ATP binding site and the active site. Overall, it appears that the inhibition results from a conformational change rather than the direct displacement of ATP.


Assuntos
Racemases e Epimerases/química , Trifosfato de Adenosina/metabolismo , Sítios de Ligação , Dissulfetos/química , Humanos , Espectrometria de Massas , Racemases e Epimerases/antagonistas & inibidores
9.
J Chem Inf Model ; 58(3): 710-723, 2018 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-29481752

RESUMO

Saturation transfer difference (STD) is an NMR technique conventionally applied in drug discovery to identify ligand moieties relevant for binding to protein cavities. This is important to direct medicinal chemistry efforts in small-molecule optimization processes. However, STD does not provide any structural details about the ligand-target complex under investigation. Herein, we report the application of a new integrated approach, which combines enhanced sampling methods with STD experiments, for the characterization of ligand-target complexes that are instrumental for drug design purposes. As an example, we have studied the interaction between StOASS-A, a potential antibacterial target, and an inhibitor previously reported. This approach allowed us to consider the ligand-target complex from a dynamic point of view, revealing the presence of an accessory subpocket which can be exploited to design novel StOASS-A inhibitors. As a proof of concept, a small library of derivatives was designed and evaluated in vitro, displaying the expected activity.


Assuntos
Cisteína Sintase/antagonistas & inibidores , Cisteína Sintase/metabolismo , Descoberta de Drogas/métodos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Salmonella typhimurium/enzimologia , Antibacterianos/química , Antibacterianos/farmacologia , Sítios de Ligação , Cisteína Sintase/química , Desenho de Fármacos , Ligantes , Espectroscopia de Ressonância Magnética/métodos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Salmonella typhimurium/efeitos dos fármacos , Termodinâmica
10.
J Enzyme Inhib Med Chem ; 33(1): 1343-1351, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30251899

RESUMO

O-acetylserine sulfhydrylase (OASS) is the pyridoxal 5'-phosphate dependent enzyme that catalyses the formation of L-cysteine in bacteria and plants. Its inactivation is pursued as a strategy for the identification of novel antibiotics that, targeting dispensable proteins, holds a great promise for circumventing resistance development. In the present study, we have investigated the reactivity of Salmonella enterica serovar Typhimurium OASS-A and OASS-B isozymes with fluoroalanine derivatives. Monofluoroalanine reacts with OASS-A and OASS-B forming either a stable or a metastable α-aminoacrylate Schiff's base, respectively, as proved by spectral changes. This finding indicates that monofluoroalanine is a substrate analogue, as previously found for other beta-halogenalanine derivatives. Trifluoroalanine caused different and time-dependent absorbance and fluorescence spectral changes for the two isozymes and is associated with irreversible inhibition. The time course of enzyme inactivation was found to be characterised by a biphasic behaviour. Partially distinct inactivation mechanisms for OASS-A and OASS-B are proposed.


Assuntos
Alanina/análogos & derivados , Cisteína Sintase/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Alanina/síntese química , Alanina/química , Alanina/farmacologia , Cisteína Sintase/metabolismo , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Estrutura Molecular , Salmonella enterica/enzimologia , Relação Estrutura-Atividade
11.
J Enzyme Inhib Med Chem ; 33(1): 1444-1452, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30221554

RESUMO

Several bacteria rely on the reductive sulphur assimilation pathway, absent in mammals, to synthesise cysteine. Reduction of virulence and decrease in antibiotic resistance have already been associated with mutations on the genes that codify cysteine biosynthetic enzymes. Therefore, inhibition of cysteine biosynthesis has emerged as a promising strategy to find new potential agents for the treatment of bacterial infection. Following our previous efforts to explore OASS inhibition and to expand and diversify our library, a scaffold hopping approach was carried out, with the aim of identifying a novel fragment for further development. This novel chemical tool, endowed with favourable pharmacological characteristics, was successfully developed, and a preliminary Structure-Activity Relationship investigation was carried out.


Assuntos
Cisteína Sintase/antagonistas & inibidores , Desenho de Fármacos , Bibliotecas de Moléculas Pequenas/química , Antibacterianos/síntese química , Antibacterianos/química , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Bactérias/enzimologia , Bactérias/genética , Sítios de Ligação , Bioensaio , Simulação por Computador , DNA Recombinante/química , DNA Recombinante/genética , Ligantes , Modelos Moleculares , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/farmacologia , Relação Estrutura-Atividade
12.
Biochim Biophys Acta Proteins Proteom ; 1865(4): 381-387, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28089597

RESUMO

Serine racemase is the pyridoxal 5'-phosphate dependent enzyme that catalyzes both production and catabolism of d-serine, a co-agonist of the NMDA glutamate receptors. Mg2+, or, alternatively, Ca2+, activate human serine racemase by binding both at a specific site and - as ATP-metal complexes - at a distinct ATP binding site. We show that Mg2+ and Ca2+ bind at the metal binding site with a 4.5-fold difference in affinity, producing a similar thermal stabilization and partially shifting the dimer-tetramer equilibrium in favour of the latter. The ATP-Ca2+ complex produces a 2-fold lower maximal activation in comparison to the ATP-Mg2+ complex and exhibits a 3-fold higher EC50. The co-presence of ATP and metals further stabilizes the tetramer. In consideration of the cellular concentrations of Mg2+ and Ca2+, even taking into account the fluctuations of the latter, these results point to Mg2+ as the sole physiologically relevant ligand both at the metal binding site and at the ATP binding site. The stabilization of the tetramer by both metals and ATP-metal complexes suggests a quaternary activation mechanism mediated by 5'-phosphonucleotides similar to that observed in the distantly related prokaryotic threonine deaminases. This allosteric mechanism has never been observed before in mammalian fold type II pyridoxal 5'-phosphate dependent enzymes.


Assuntos
Cálcio/química , Magnésio/química , Racemases e Epimerases/química , Trifosfato de Adenosina/química , Sítios de Ligação , Humanos , Estrutura Quaternária de Proteína
13.
Biochim Biophys Acta Gen Subj ; 1861(1 Pt A): 3474-3489, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27640111

RESUMO

BACKGROUND: GabR is a transcriptional regulator belonging to the MocR/GabR family, characterized by a N-terminal wHTH DNA-binding domain and a C-terminal effector binding and/or oligomerization domain, structurally homologous to aminotransferases (ATs). In the presence of γ-aminobutyrate (GABA) and pyridoxal 5'-phosphate (PLP), GabR activates the transcription of gabT and gabD genes involved in GABA metabolism. METHODS: Here we report a biochemical and atomic force microscopy characterization of Bacillus subtilis GabR in complex with DNA. Complexes were assembled in vitro to study their stoichiometry, stability and conformation. RESULTS: The fractional occupancy of the GabR cognate site suggests that GabR binds as a dimer with Kd of 10nM. Upon binding GabR bends the DNA by 80° as measured by anomalous electrophoretic mobility. With GABA we observed a decrease in affinity and conformational rearrangements compatible with a less compact nucleo-protein complex but no changes of the DNA bending angle. By employing promoter and GabR mutants we found that basic residues of the positively charged groove on the surface of the AT domain affect DNA affinity. CONCLUSIONS: The present data extend current understanding of the GabR-DNA interaction and the effect of GABA and PLP. A model for the GabR-DNA complex, corroborated by a docking simulation, is proposed. GENERAL SIGNIFICANCE: Characterization of the GabR DNA binding mode highlights the key role of DNA bending and interactions with bases outside the canonical direct repeats, and might be of general relevance for the action mechanism of MocR transcription factors.


Assuntos
Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , DNA Bacteriano/química , DNA Bacteriano/metabolismo , Conformação de Ácido Nucleico , Fosfato de Piridoxal/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Bactérias/química , Sequência de Bases , Dicroísmo Circular , Microscopia de Força Atômica , Modelos Moleculares , Proteínas Mutantes/metabolismo , Regiões Promotoras Genéticas/genética , Ligação Proteica , Domínios Proteicos , Sequências Repetitivas de Ácido Nucleico/genética , Alinhamento de Sequência , Espectrofotometria Ultravioleta , Eletricidade Estática , Ácido gama-Aminobutírico/metabolismo
14.
Biochem J ; 473(20): 3505-3516, 2016 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-27493223

RESUMO

Serine racemase catalyzes both the synthesis and the degradation of d-serine, an obligatory co-agonist of the glutamatergic NMDA receptors. It is allosterically controlled by adenosine triphosphate (ATP), which increases its activity around 7-fold through a co-operative binding mechanism. Serine racemase has been proposed as a drug target for the treatment of several neuropathologies but, so far, the search has been directed only toward the active site, with the identification of a few, low-affinity inhibitors. Following the recent observation that nicotinamide adenine dinucleotide (reduced form) (NADH) inhibits serine racemase, here we show that the inhibition is partial, with an IC50 of 246 ± 63 µM, several-fold higher than NADH intracellular concentrations. At saturating concentrations of NADH, ATP binds with a 2-fold lower affinity and without co-operativity, suggesting ligand competition. NADH also reduces the weak activity of human serine racemase in the absence of ATP, indicating an additional ATP-independent inhibition mechanism. By dissecting the NADH molecule, we discovered that the inhibitory determinant is the N-substituted 1,4-dihydronicotinamide ring. Particularly, the NADH precursor 1,4-dihydronicotinamide mononucleotide exhibited a partial mixed-type inhibition, with a KI of 18 ± 7 µM. Docking simulations suggested that all 1,4-dihydronicotinamide derivatives bind at the interdimeric interface, with the ring positioned in an unoccupied site next to the ATP-binding site. This newly recognized allosteric site might be exploited for the design of high-affinity serine racemase effectors to finely modulate d-serine homeostasis.


Assuntos
NAD/farmacologia , Niacinamida/farmacologia , Racemases e Epimerases/metabolismo , Trifosfato de Adenosina/metabolismo , Sítio Alostérico , Sítios de Ligação , Humanos , Concentração Inibidora 50 , Cinética , NADP/metabolismo , Niacinamida/análogos & derivados , Niacinamida/química , Niacinamida/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Receptores de N-Metil-D-Aspartato/metabolismo , Serina/metabolismo
15.
Biochim Biophys Acta ; 1854(9): 1184-93, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25731080

RESUMO

O-acetylserine sulfhydrylase A (CysK) is the pyridoxal 5'-phosphate-dependent enzyme that catalyzes the final reaction of cysteine biosynthesis in bacteria. CysK was initially identified in a complex with serine acetyltransferase (CysE), which catalyzes the penultimate reaction in the synthetic pathway. This "cysteine synthase" complex is stabilized by insertion of the CysE C-terminus into the active-site of CysK. Remarkably, the CysK/CysE binding interaction is conserved in most bacterial and plant systems. For the past 40years, CysK was thought to function exclusively in cysteine biosynthesis, but recent studies have revealed a repertoire of additional "moonlighting" activities for this enzyme. CysK and its paralogs influence transcription in both Gram-positive bacteria and the nematode Caenorhabditis elegans. CysK also activates an antibacterial nuclease toxin produced by uropathogenic Escherichia coli. Intriguingly, each moonlighting activity requires a binding partner that invariably mimics the C-terminus of CysE to interact with the CysK active site. This article is part of a Special Issue entitled: Cofactor-dependent proteins: evolution, chemical diversity and bio-applications.


Assuntos
Cisteína Sintase/fisiologia , Bactérias/metabolismo , Sítios de Ligação , Cisteína/biossíntese , Cisteína Sintase/química , Serina O-Acetiltransferase/química , Serina O-Acetiltransferase/fisiologia , Transcrição Gênica
16.
J Enzyme Inhib Med Chem ; 31(4): 645-52, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26133542

RESUMO

d-Serine is the co-agonist of NMDA receptors and binds to the so-called glycine site. d-Serine is synthesized by human serine racemase (SR). Over activation of NMDA receptors is involved in many neurodegenerative diseases and, therefore, the inhibition of SR might represent a novel strategy for the treatment of these pathologies. SR is a very difficult target, with only few compounds so far identified exhibiting weak inhibitory activity. This study was aimed at the identification of novel SR inhibitor by mimicking malonic acid, the best-known SR inhibitor, with a cyclopropane scaffold. We developed, synthesized, and tested a series of cyclopropane dicarboxylic acid derivatives, complementing the synthetic effort with molecular docking. We identified few compounds that bind SR in high micromolar range with a lack of significant correlation between experimental and predicted binding affinities. The thorough analysis of the results can be exploited for the development of more potent SR inhibitors.


Assuntos
Ciclopropanos/farmacologia , Inibidores Enzimáticos/farmacologia , Racemases e Epimerases/antagonistas & inibidores , Ciclopropanos/síntese química , Ciclopropanos/química , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Racemases e Epimerases/metabolismo , Relação Estrutura-Atividade
17.
J Enzyme Inhib Med Chem ; 31(sup4): 78-87, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27578398

RESUMO

Cysteine is a building block for many biomolecules that are crucial for living organisms. O-Acetylserine sulfhydrylase (OASS), present in bacteria and plants but absent in mammals, catalyzes the last step of cysteine biosynthesis. This enzyme has been deeply investigated because, beside the biosynthesis of cysteine, it exerts a series of "moonlighting" activities in bacteria. We have previously reported a series of molecules capable of inhibiting Salmonella typhimurium (S. typhymurium) OASS isoforms at nanomolar concentrations, using a combination of computational and spectroscopic approaches. The cyclopropane-1,2-dicarboxylic acids presented herein provide further insights into the binding mode of small molecules to OASS enzymes. Saturation transfer difference NMR (STD-NMR) was used to characterize the molecule/enzyme interactions for both OASS-A and B. Most of the compounds induce a several fold increase in fluorescence emission of the pyridoxal 5'-phosphate (PLP) coenzyme upon binding to either OASS-A or OASS-B, making these compounds excellent tools for the development of competition-binding experiments.


Assuntos
Ciclopropanos/farmacologia , Cisteína Sintase/antagonistas & inibidores , Ácidos Dicarboxílicos/farmacologia , Inibidores Enzimáticos/farmacologia , Fluorometria , Ciclopropanos/síntese química , Ciclopropanos/química , Cisteína Sintase/química , Cisteína Sintase/metabolismo , Ácidos Dicarboxílicos/síntese química , Ácidos Dicarboxílicos/química , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Espectroscopia de Ressonância Magnética , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade
18.
Amino Acids ; 47(1): 163-73, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25331425

RESUMO

D-Serine is a non-proteinogenic amino acid that acts as a co-agonist of the NMDA receptors in the central nervous system. D-Serine is produced by human serine racemase (hSR), a homodimeric pyridoxal 5'-phosphate (PLP)-dependent enzyme that also catalyzes the physiologically relevant ß-elimination of both L- and D-serine to pyruvate and ammonia. After improving the protein purification yield and stability, which had so far limited the biochemical characterization of hSR, we found that the catalytic activity is affected by halides, in the order fluoride > chloride > bromide. On the contrary, iodide elicited a complete inhibition, accompanied by a modulation of the tautomeric equilibrium of the internal aldimine. We also investigated the reciprocal effects of ATP and malonate, an inhibitor that reversibly binds at the active site, 20 Å away from the ATP-binding site. ATP increased ninefold the affinity of hSR for malonate and malonate increased 100-fold that of ATP, confirming an allosteric interaction between the two binding sites. To further investigate this allosteric communication, we probed the active site accessibility by quenching of the coenzyme fluorescence in the absence and presence of ATP. We found that ATP stabilizes a closed conformation of the external aldimine Schiff base, suggesting a possible mechanism for ATP-induced hSR activation.


Assuntos
Trifosfato de Adenosina/metabolismo , Brometos/metabolismo , Cloretos/metabolismo , Fluoretos/metabolismo , Malonatos/metabolismo , Racemases e Epimerases/metabolismo , Trifosfato de Adenosina/química , Sítios de Ligação , Brometos/química , Domínio Catalítico , Cloretos/química , Fluoretos/química , Humanos , Cinética , Malonatos/química , Racemases e Epimerases/química
19.
Bioorg Med Chem Lett ; 25(19): 4297-303, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26283510

RESUMO

Serine racemase, the enzyme responsible for d-serine synthesis in the central nervous system, has been identified as a potential therapeutic target to treat N-methyl-d-aspartate receptors-related pathologies. The search for specific inhibitors of the enzyme has revealed that serine racemase is a difficult target, with the best inhibitor currently identified, 2,2-dichloromalonate, showing a Ki of 19 µM. In order to expand the chemical space of hit compounds, we have performed an in silico structure-based screening campaign on a filtered ZINC library applying the FLAP software. The identified hits were docked with GOLD and re-scored with HINT, and the most promising molecules experimentally evaluated on recombinant human serine racemase. Two inhibitors, with chemical structures totally unrelated to inhibitors described so far showed Ki values of about 1.5 mM.


Assuntos
Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Hidrocarbonetos Clorados/farmacologia , Malonatos/farmacologia , Racemases e Epimerases/antagonistas & inibidores , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Humanos , Hidrocarbonetos Clorados/síntese química , Hidrocarbonetos Clorados/química , Malonatos/síntese química , Malonatos/química , Estrutura Molecular , Racemases e Epimerases/metabolismo , Relação Estrutura-Atividade
20.
Biochim Biophys Acta ; 1834(1): 169-81, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23000429

RESUMO

O-acetylserine sulfhydrylase (OASS) catalyzes the synthesis of l-cysteine in the last step of the reductive sulfate assimilation pathway in microorganisms. Its activity is inhibited by the interaction with serine acetyltransferase (SAT), the preceding enzyme in the metabolic pathway. Inhibition is exerted by the insertion of SAT C-terminal peptide into the OASS active site. This action is effective only on the A isozyme, the prevalent form in enteric bacteria under aerobic conditions, but not on the B-isozyme, the form expressed under anaerobic conditions. We have investigated the active site determinants that modulate the interaction specificity by comparing the binding affinity of thirteen pentapeptides, derived from the C-terminal sequences of SAT of the closely related species Haemophilus influenzae and Salmonella typhimurium, towards the corresponding OASS-A, and towards S. typhimurium OASS-B. We have found that subtle changes in protein active sites have profound effects on protein-peptide recognition. Furthermore, affinity is strongly dependent on the pentapeptide sequence, signaling the relevance of P3-P4-P5 for the strength of binding, and P1-P2 mainly for specificity. The presence of an aromatic residue at P3 results in high affinity peptides with K(diss) in the micromolar and submicromolar range, regardless of the species. An acidic residue, like aspartate at P4, further strengthens the interaction and results in the higher affinity ligand of S. typhimurium OASS-A described to date. Since OASS knocked-out bacteria exhibit a significantly decreased fitness, this investigation provides key information for the development of selective OASS inhibitors, potentially useful as novel antibiotic agents.


Assuntos
Proteínas de Bactérias/química , Cisteína Sintase/química , Haemophilus influenzae/enzimologia , Salmonella typhimurium/enzimologia , Serina O-Acetiltransferase/química , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Cisteína Sintase/metabolismo , Isoenzimas/química , Isoenzimas/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Serina O-Acetiltransferase/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa