Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
J Virol ; 98(1): e0179123, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38168672

RESUMO

In the United States (US), biosafety and biosecurity oversight of research on viruses is being reappraised. Safety in virology research is paramount and oversight frameworks should be reviewed periodically. Changes should be made with care, however, to avoid impeding science that is essential for rapidly reducing and responding to pandemic threats as well as addressing more common challenges caused by infectious diseases. Decades of research uniquely positioned the US to be able to respond to the COVID-19 crisis with astounding speed, delivering life-saving vaccines within a year of identifying the virus. We should embolden and empower this strength, which is a vital part of protecting the health, economy, and security of US citizens. Herein, we offer our perspectives on priorities for revised rules governing virology research in the US.


Assuntos
Pesquisa Biomédica , Contenção de Riscos Biológicos , Virologia , Humanos , COVID-19 , Estados Unidos , Vírus , Pesquisa Biomédica/normas
2.
PLoS Pathog ; 16(11): e1009028, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33253291

RESUMO

Oncogenic human papillomaviruses (HPVs) replicate in differentiating epithelium, causing 5% of cancers worldwide. Like most other DNA viruses, HPV infection initiates after trafficking viral genome (vDNA) to host cell nuclei. Cells possess innate surveillance pathways to detect microbial components or physiological stresses often associated with microbial infections. One of these pathways, cGAS/STING, induces IRF3-dependent antiviral interferon (IFN) responses upon detection of cytosolic DNA. Virion-associated vDNA can activate cGAS/STING during initial viral entry and uncoating/trafficking, and thus cGAS/STING is an obstacle to many DNA viruses. HPV has a unique vesicular trafficking pathway compared to many other DNA viruses. As the capsid uncoats within acidic endosomal compartments, minor capsid protein L2 protrudes across vesicular membranes to facilitate transport of vDNA to the Golgi. L2/vDNA resides within the Golgi lumen until G2/M, whereupon vesicular L2/vDNA traffics along spindle microtubules, tethering to chromosomes to access daughter cell nuclei. L2/vDNA-containing vesicles likely remain intact until G1, following nuclear envelope reformation. We hypothesize that this unique vesicular trafficking protects HPV from cGAS/STING surveillance. Here, we investigate cGAS/STING responses to HPV infection. DNA transfection resulted in acute cGAS/STING activation and downstream IFN responses. In contrast, HPV infection elicited minimal cGAS/STING and IFN responses. To determine the role of vesicular trafficking in cGAS/STING evasion, we forced premature viral penetration of vesicular membranes with membrane-perturbing cationic lipids. Such treatment renders a non-infectious trafficking-defective mutant HPV infectious, yet susceptible to cGAS/STING detection. Overall, HPV evades cGAS/STING by its unique subcellular trafficking, a property that may contribute to establishment of infection.


Assuntos
Alphapapillomavirus/fisiologia , Genoma Viral/genética , Fator Regulador 3 de Interferon/metabolismo , Proteínas de Membrana/metabolismo , Nucleotidiltransferases/metabolismo , Infecções por Papillomavirus/virologia , Alphapapillomavirus/genética , Alphapapillomavirus/imunologia , Transporte Biológico , Capsídeo/metabolismo , Endossomos/virologia , Humanos , Mutação , Vírion , Internalização do Vírus
4.
PLoS Pathog ; 13(5): e1006200, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28463988

RESUMO

The human papillomavirus type 16 (HPV16) L2 protein acts as a chaperone to ensure that the viral genome (vDNA) traffics from endosomes to the trans-Golgi network (TGN) and eventually the nucleus, where HPV replication occurs. En route to the nucleus, the L2/vDNA complex must translocate across limiting intracellular membranes. The details of this critical process remain poorly characterized. We have developed a system based on subcellular compartmentalization of the enzyme BirA and its cognate substrate to detect membrane translocation of L2-BirA from incoming virions. We find that L2 translocation requires transport to the TGN and is strictly dependent on entry into mitosis, coinciding with mitotic entry in synchronized cells. Cell cycle arrest causes retention of L2/vDNA at the TGN; only release and progression past G2/M enables translocation across the limiting membrane and subsequent infection. Microscopy of EdU-labeled vDNA reveals a rapid and dramatic shift in vDNA localization during early mitosis. At late G2/early prophase vDNA egresses from the TGN to a pericentriolar location, accumulating there through prometaphase where it begins to associate with condensed chromosomes. By metaphase and throughout anaphase the vDNA is seen bound to the mitotic chromosomes, ensuring distribution into both daughter nuclei. Mutations in a newly defined chromatin binding region of L2 potently blocked translocation, suggesting that translocation is dependent on chromatin binding during prometaphase. This represents the first time a virus has been shown to functionally couple the penetration of limiting membranes to cellular mitosis, explaining in part the tropism of HPV for mitotic basal keratinocytes.


Assuntos
Proteínas do Capsídeo/metabolismo , Genoma Viral/genética , Papillomavirus Humano 16/fisiologia , Mitose , Proteínas Oncogênicas Virais/metabolismo , Infecções por Papillomavirus/virologia , Transporte Biológico , Proteínas do Capsídeo/genética , Pontos de Checagem do Ciclo Celular , Linhagem Celular , Núcleo Celular/metabolismo , Núcleo Celular/virologia , DNA Viral/genética , DNA Viral/metabolismo , Endossomos/metabolismo , Endossomos/virologia , Papillomavirus Humano 16/genética , Humanos , Queratinócitos/virologia , Mutação , Proteínas Oncogênicas Virais/genética , Tropismo Viral , Vírion , Internalização do Vírus , Rede trans-Golgi/metabolismo , Rede trans-Golgi/virologia
5.
PLoS Pathog ; 13(5): e1006308, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28464022

RESUMO

Incoming papillomaviruses (PVs) depend on mitotic nuclear envelope breakdown to gain initial access to the nucleus for viral transcription and replication. In our previous work, we hypothesized that the minor capsid protein L2 of PVs tethers the incoming vDNA to mitotic chromosomes to direct them into the nascent nuclei. To re-evaluate how dynamic L2 recruitment to cellular chromosomes occurs specifically during prometaphase, we developed a quantitative, microscopy-based assay for measuring the degree of chromosome recruitment of L2-EGFP. Analyzing various HPV16 L2 truncation-mutants revealed a central chromosome-binding region (CBR) of 147 amino acids that confers binding to mitotic chromosomes. Specific mutations of conserved motifs (IVAL286AAAA, RR302/5AA, and RTR313EEE) within the CBR interfered with chromosomal binding. Moreover, assembly-competent HPV16 containing the chromosome-binding deficient L2(RTR313EEE) or L2(IVAL286AAAA) were inhibited for infection despite their ability to be transported to intracellular compartments. Since vDNA and L2 were not associated with mitotic chromosomes either, the infectivity was likely impaired by a defect in tethering of the vDNA to mitotic chromosomes. However, L2 mutations that abrogated chromatin association also compromised translocation of L2 across membranes of intracellular organelles. Thus, chromatin recruitment of L2 may in itself be a requirement for successful penetration of the limiting membrane thereby linking both processes mechanistically. Furthermore, we demonstrate that the association of L2 with mitotic chromosomes is conserved among the alpha, beta, gamma, and iota genera of Papillomaviridae. However, different binding patterns point to a certain variance amongst the different genera. Overall, our data suggest a common strategy among various PVs, in which a central region of L2 mediates tethering of vDNA to mitotic chromosomes during cell division thereby coordinating membrane translocation and delivery to daughter nuclei.


Assuntos
Proteínas do Capsídeo/metabolismo , Genoma Viral/genética , Papillomavirus Humano 16/genética , Mitose , Proteínas Oncogênicas Virais/metabolismo , Transporte Biológico , Proteínas do Capsídeo/genética , Núcleo Celular/metabolismo , Núcleo Celular/virologia , Cromatina/genética , Cromossomos/genética , DNA Viral/genética , DNA Viral/metabolismo , Genes Reporter , Papillomavirus Humano 16/fisiologia , Humanos , Membranas Intracelulares/metabolismo , Membranas Intracelulares/virologia , Mutação , Proteínas Oncogênicas Virais/genética , Vírion
6.
J Virol ; 90(14): 6224-6234, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27122588

RESUMO

UNLABELLED: Despite an abundance of evidence supporting an important role for the cleavage of minor capsid protein L2 by cellular furin, direct cleavage of capsid-associated L2 during human papillomavirus 16 (HPV16) infection remains poorly characterized. The conserved cleavage site, close to the L2 N terminus, confounds observation and quantification of the small cleavage product by SDS-PAGE. To overcome this difficulty, we increased the size shift by fusing a compact protein domain, the Propionibacterium shermanii transcarboxylase domain (PSTCD), to the N terminus of L2. The infectious PSTCD-L2 virus displayed an appreciable L2 size shift during infection of HaCaT keratinocytes. Cleavage under standard cell culture conditions rarely exceeded 35% of total L2. Cleavage levels were enhanced by the addition of exogenous furin, and the absolute levels of infection correlated to the level of L2 cleavage. Cleavage occurred on both the HaCaT cell surface and extracellular matrix (ECM). Contrary to current models, experiments on the involvement of cyclophilins revealed little, if any, role for these cellular enzymes in the modulation of furin cleavage. HPV16 L2 contains two consensus cleavage sites, Arg5 (2RHKR5) and Arg12 (9RTKR12). Mutant PSTCD-L2 viruses demonstrated that although furin can cleave either site, cleavage must occur at Arg12, as cleavage at Arg5 alone is insufficient for successful infection. Mutation of the conserved cysteine residues revealed that the Cys22-Cys28 disulfide bridge is not required for cleavage. The PSTCD-L2 virus or similar N-terminal fusions will be valuable tools to study additional cellular and viral determinants of furin cleavage. IMPORTANCE: Furin cleavage of minor capsid protein L2 during papillomavirus infection has been difficult to directly visualize and quantify, confounding efforts to study this important step of HPV infection. Fusion of a small protein domain to the N terminus greatly facilitates direct visualization of the cleavage product, revealing important characteristics of this critical process. Contrary to the current model, we found that cleavage is largely independent of cyclophilins, suggesting that cyclophilins act either in parallel to or downstream of furin to trigger exposure of a conserved N-terminal L2 epitope (RG-1) during infection. Based on this finding, we strongly caution against using L2 RG-1 epitope exposure as a convenient but indirect proxy of furin cleavage.


Assuntos
Proteínas do Capsídeo/metabolismo , Ciclofilinas/metabolismo , Furina/metabolismo , Papillomavirus Humano 16/fisiologia , Queratinócitos/metabolismo , Proteínas Oncogênicas Virais/metabolismo , Infecções por Papillomavirus/metabolismo , Internalização do Vírus , Sequência de Aminoácidos , Proteínas do Capsídeo/genética , Epitopos/metabolismo , Furina/antagonistas & inibidores , Furina/genética , Humanos , Queratinócitos/citologia , Queratinócitos/virologia , Mutagênese Sítio-Dirigida , Mutação/genética , Proteínas Oncogênicas Virais/genética , Infecções por Papillomavirus/virologia , RNA Interferente Pequeno/genética , Homologia de Sequência de Aminoácidos
7.
Traffic ; 13(3): 455-67, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22151726

RESUMO

The human papillomavirus (HPV) L2 capsid protein plays an essential role during the early stages of viral infection, but the molecular mechanisms underlying its mode of action remain obscure. Using a proteomic approach, we have identified the adaptor protein, sorting nexin 17 (SNX17) as a strong interacting partner of HPV L2. This interaction occurs through a highly conserved SNX17 consensus binding motif, which is present in the majority of HPV L2 proteins analysed. Using mutants of L2 defective for SNX17 interaction, or siRNA ablation of SNX17 expression, we demonstrate that the interaction between L2 and SNX17 is essential for viral infection. Furthermore, loss of the L2-SNX17 interaction results in enhanced turnover of the L2 protein and decreased stability of the viral capsids, and concomitantly, there is a dramatic decrease in the efficiency with which viral genomes transit to the nucleus. Indeed, using a range of endosomal and lysosomal markers, we show that capsids defective in their capacity to bind SNX17 transit much more rapidly to the lysosomal compartment. These results demonstrate that the L2-SNX17 interaction is essential for viral infection and facilitates the escape of the L2-DNA complex from the late endosomal/lysosomal compartments.


Assuntos
Proteínas do Capsídeo/metabolismo , Endossomos/metabolismo , Proteínas Oncogênicas Virais/metabolismo , Papillomaviridae , Nexinas de Classificação/metabolismo , Infecções por Vírus de DNA/patologia , Células HEK293 , Humanos , Fatores de Tempo
8.
J Virol ; 87(1): 464-73, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23097431

RESUMO

During cellular invasion, human papillomavirus type 16 (HPV16) must transfer its viral genome (vDNA) across the endosomal membrane prior to its accumulation at nuclear PML bodies for the establishment of infection. After cellular uptake, the capsid likely undergoes pH-dependent disassembly within the endo-/lysosomal compartment, thereby exposing hidden domains in L2 that facilitate membrane penetration of L2/vDNA complexes. In an effort to identify regions of L2 that might physically interact with membranes, we have subjected the L2 sequence to multiple transmembrane (TM) domain prediction algorithms. Here, we describe a conserved TM domain within L2 (residues 45 to 67) and investigate its role in HPV16 infection. In vitro, the predicted TM domain adopts an alpha-helical structure in lipid environments and can function as a real TM domain, although not as efficiently as the bona fide TM domain of PDGFR. An L2 double point mutant renders the TM domain nonfunctional and blocks HPV16 infection by preventing endosomal translocation of vDNA. The TM domain contains three highly conserved GxxxG motifs. These motifs can facilitate homotypic and heterotypic interactions between TM helices, activities that may be important for vDNA translocation. Disruption of some of these GxxxG motifs resulted in noninfectious viruses, indicating a critical role in infection. Using a ToxR-based homo-oligomerization assay, we show a propensity for this TM domain to self-associate in a GxxxG-dependent manner. These data suggest an important role for the self-associating L2 TM domain and the conserved GxxxG motifs in the transfer of vDNA across the endo-/lysosomal membrane.


Assuntos
Proteínas do Capsídeo/metabolismo , DNA Viral/metabolismo , Papillomavirus Humano 16/fisiologia , Proteínas Oncogênicas Virais/metabolismo , Fatores de Virulência/metabolismo , Replicação Viral , Desenvelopamento do Vírus , Motivos de Aminoácidos , Transporte Biológico , Proteínas do Capsídeo/genética , Linhagem Celular , Sequência Conservada , Análise Mutacional de DNA , Papillomavirus Humano 16/genética , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mutação de Sentido Incorreto , Proteínas Oncogênicas Virais/genética , Conformação Proteica , Estrutura Terciária de Proteína , Fatores de Virulência/genética
9.
Tumour Virus Res ; 18: 200287, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38909779

RESUMO

High risk human papillomavirus (HPV) infection is responsible for 99 % of cervical cancers and 5 % of all human cancers worldwide. HPV infection requires the viral genome (vDNA) to gain access to nuclei of basal keratinocytes of epithelium. After virion endocytosis, the minor capsid protein L2 dictates the subcellular retrograde trafficking and nuclear localization of the vDNA during mitosis. Prior work identified a cell-permeable peptide termed SNX1.3, derived from the BAR domain of sorting nexin 1 (SNX1), that potently blocks the retrograde and nuclear trafficking of EGFR in triple negative breast cancer cells. Given the importance of EGFR and retrograde trafficking pathways in HPV16 infection, we set forth to study the effects of SNX1.3 within this context. SNX1.3 inhibited HPV16 infection by both delaying virion endocytosis, as well as potently blocking virion retrograde trafficking and Golgi localization. SNX1.3 had no effect on cell proliferation, nor did it affect post-Golgi trafficking of HPV16. Looking more directly at L2 function, SNX1.3 was found to impair membrane spanning of the minor capsid protein. Future work will focus on mechanistic studies of SNX1.3 inhibition, and the role of EGFR signaling and SNX1-mediated endosomal tubulation, cargo sorting, and retrograde trafficking in HPV infection.

10.
bioRxiv ; 2024 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-38826391

RESUMO

High risk human papillomavirus (HPV) infection is responsible for 99% of cervical cancers and 5% of all human cancers worldwide. HPV infection requires the viral genome (vDNA) to gain access to nuclei of basal keratinocytes of epithelium. After virion endocytosis, the minor capsid protein L2 dictates the subcellular retrograde trafficking and nuclear localization of the vDNA during mitosis. Prior work identified a cell-permeable peptide termed SNX1.3, derived from the BAR domain of sorting nexin 1 (SNX1), that potently blocks the retrograde and nuclear trafficking of EGFR in triple negative breast cancer cells. Given the importance of EGFR and retrograde trafficking pathways in HPV16 infection, we set forth to study the effects of SNX1.3 within this context. SNX1.3 inhibited HPV16 infection by both delaying virion endocytosis, as well as potently blocking virion retrograde trafficking and Golgi localization. SNX1.3 had no effect on cell proliferation, nor did it affect post-Golgi trafficking of HPV16. Looking more directly at L2 function, SNX1.3 was found to impair membrane spanning of the minor capsid protein. Future work will focus on mechanistic studies of SNX1.3 inhibition, and the role of EGFR signaling and SNX1- mediated endosomal tubulation, cargo sorting, and retrograde trafficking in HPV infection.

11.
J Gen Virol ; 94(Pt 8): 1865-1869, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23677785

RESUMO

Cathepsin L (CatL) and cathepsin B (CatB) are lysosomal proteases that many viruses utilize for capsid disassembly. We tested whether CatL and CatB are required for infection by human papillomavirus type 16 (HPV16). CatL- and CatB-deficient mouse embryonic fibroblasts had higher levels of infection when compared with wild-type cells. Similar results were obtained in HaCaT keratinocytes treated with CatL- or CatB-specific small interfering RNA. Thus, CatL and CatB are not required for HPV16 infection but instead appear to restrict infection.


Assuntos
Catepsina B/metabolismo , Catepsina L/metabolismo , Interações Hospedeiro-Patógeno , Papillomavirus Humano 16/fisiologia , Internalização do Vírus , Animais , Linhagem Celular , Feminino , Humanos , Camundongos , Camundongos Knockout
12.
J Virol ; 86(8): 4169-81, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22345461

RESUMO

Cell invasion by human papillomavirus type 16 (HPV16) is a complex process relying on multiple host cell factors. Here we describe an investigation into the role of cellular protein disulfide isomerases (PDIs) by studying the effects of the commonly used PDI inhibitor bacitracin on HPV16 infection. Bacitracin caused an unusual time-dependent opposing effect on viral infection. Enhanced cellular binding and entry were observed at early times of infection, while inhibition was observed at later times postentry. Bacitracin was rapidly taken up by host cells and colocalized with HPV16 at late times of infection. Bacitracin had no deleterious effect on HPV16 entry, capsid disassembly, exposure of L1/L2 epitopes, or lysosomal trafficking but caused a stark inhibition of L2/viral DNA (vDNA) endosomal penetration and accumulation at nuclear PML bodies. γ-Secretase has recently been implicated in the endosomal penetration of L2/vDNA, but bacitracin had no effect on γ-secretase activity, indicating that blockage of this step occurs through a γ-secretase-independent mechanism. Transient treatment with the reductant ß-mercaptoethanol (ß-ME) was able to partially rescue the virus from bacitracin, suggesting the involvement of a cellular reductase activity in HPV16 infection. Small interfering RNA (siRNA) knockdown of cellular PDI and the related PDI family members ERp57 and ERp72 reveals a potential role for PDI and ERp72 in HPV infection.


Assuntos
Antivirais/farmacologia , Bacitracina/farmacologia , Endossomos/efeitos dos fármacos , Papillomavirus Humano 16/efeitos dos fármacos , Secretases da Proteína Precursora do Amiloide/metabolismo , Antivirais/metabolismo , Bacitracina/metabolismo , Transporte Biológico/efeitos dos fármacos , Proteínas do Capsídeo/química , Proteínas do Capsídeo/imunologia , Linhagem Celular , Nucléolo Celular/metabolismo , Endocitose , Endossomos/virologia , Epitopos/imunologia , Genoma Viral , Papillomavirus Humano 16/imunologia , Humanos , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Oncogênicas Virais/química , Proteínas Oncogênicas Virais/imunologia , Isomerases de Dissulfetos de Proteínas/antagonistas & inibidores , Isomerases de Dissulfetos de Proteínas/genética , Substâncias Redutoras/farmacologia , Internalização do Vírus/efeitos dos fármacos
13.
Nat Commun ; 14(1): 355, 2023 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-36683055

RESUMO

Mitosis induces cellular rearrangements like spindle formation, Golgi fragmentation, and nuclear envelope breakdown. Similar to certain retroviruses, nuclear delivery during entry of human papillomavirus (HPV) genomes is facilitated by mitosis, during which minor capsid protein L2 tethers viral DNA to mitotic chromosomes. However, the mechanism of viral genome delivery and tethering to condensed chromosomes is barely understood. It is unclear, which cellular proteins facilitate this process or how this process is regulated. This work identifies crucial phosphorylations on HPV minor capsid protein L2 occurring at mitosis onset. L2's chromosome binding region (CBR) is sequentially phosphorylated by the master mitotic kinases CDK1 and PLK1. L2 phosphorylation, thus, regulates timely delivery of HPV vDNA to mitotic chromatin during mitosis. In summary, our work demonstrates a crucial role of mitotic kinases for nuclear delivery of viral DNA and provides important insights into the molecular mechanism of pathogen import into the nucleus during mitosis.


Assuntos
Proteínas do Capsídeo , Infecções por Papillomavirus , Humanos , Proteínas do Capsídeo/metabolismo , DNA Viral/genética , DNA Viral/metabolismo , Internalização do Vírus , Mitose , Fosforilação , Genoma Viral , Proteínas de Ciclo Celular/metabolismo
15.
J Virol ; 84(21): 11310-22, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20739542

RESUMO

Subspecies B1 human adenoviruses (HAdV-B1s) are important causative agents of acute respiratory disease, but the molecular bases of their distinct pathobiology are still poorly understood. Marked differences in genetic content between HAdV-B1s and the well-characterized HAdV-Cs that may contribute to distinct pathogenic properties map to the E3 region. Between the highly conserved E3-19K and E3-10.4K/RIDα open reading frames (ORFs), and in the same location as the HAdV-C ADP/E3-11.6K ORF, HAdV-B1s carry ORFs E3-20.1K and E3-20.5K and a polymorphic third ORF, designated E3-10.9K, that varies in the size of its predicted product among HAdV-B1 serotypes and genomic variants. As an initial effort to define the function of the E3-10.9K ORF, we carried out a biochemical characterization of E3-10.9K-encoded orthologous proteins and investigated their expression in infected cells. Sequence-based predictions suggested that E3-10.9K orthologs with a hydrophobic domain are integral membrane proteins. Ectopically expressed, C-terminally tagged (with enhanced green fluorescent protein [EGFP]) E3-10.9K and E3-9K localized primarily to the plasma membrane, while E3-7.7K localized primarily to a juxtanuclear compartment that could not be identified. EGFP fusion proteins with a hydrophobic domain were N and O glycosylated. EGFP-tagged E3-4.8K, which lacked the hydrophobic domain, displayed diffuse cellular localization similar to that of the EGFP control. E3-10.9K transcripts from the major late promoter were detected at late time points postinfection. A C-terminally hemagglutinin-tagged version of E3-9K was detected by immunoprecipitation at late times postinfection in the membrane fraction of mutant virus-infected cells. These data suggest a role for ORF E3-10.9K-encoded proteins at late stages of HAdV-B1 replication, with potentially important functional implications for the documented ORF polymorphism.


Assuntos
Adenovírus Humanos/genética , Fases de Leitura Aberta/genética , Linhagem Celular , Membrana Celular , Núcleo Celular , Humanos , Polimorfismo Genético , Proteínas Virais
16.
Curr Opin Virol ; 50: 76-86, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34416595

RESUMO

Human papillomaviruses (HPVs) infect and replicate in differentiating mucosal and cutaneous epithelium. Most HPV infections are asymptomatic or cause transient benign neoplasia. However, persistent infections by oncogenic HPV types can progress to cancer. During infectious entry into host keratinocytes, HPV particles interact with many host proteins, beginning with major capsid protein L1 binding to cellular heparan sulfate and a series of enzymatic capsid modifications that promote infectious cellular entry. After utilizing the endosomal pathway to uncoat the viral genome (vDNA), the minor capsid protein L2/vDNA complex is retrograde trafficked to the Golgi, and thereafter, to the nucleus where viral transcription initiates. Post-Golgi trafficking is dependent on mitosis, with L2-dependent tethering of vDNA to mitotic chromosomes before accumulation at nuclear substructures in G1. This review summarizes the current knowledge of the HPV entry pathway, the role of cellular proteins in this process, and notes many gaps in our understanding.


Assuntos
Alphapapillomavirus , Infecções por Papillomavirus , Proteínas do Capsídeo , Humanos , Papillomaviridae , Internalização do Vírus
17.
ACS Chem Neurosci ; 12(8): 1299-1312, 2021 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-33787218

RESUMO

Neuropilin-1 (NRP-1) is a multifunctional transmembrane receptor for ligands that affect developmental axonal growth and angiogenesis. In addition to a role in cancer, NRP-1 is a reported entry point for several viruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causal agent of coronavirus disease 2019 (COVID-19). The furin cleavage product of SARS-CoV-2 Spike protein takes advantage of the vascular endothelial growth factor A (VEGF-A) binding site on NRP-1 which accommodates a polybasic stretch ending in a C-terminal arginine. This site has long been a focus of drug discovery efforts for cancer therapeutics. We recently showed that interruption of the VEGF-A/NRP-1 signaling pathway ameliorates neuropathic pain and hypothesize that interference of this pathway by SARS-CoV-2 Spike protein interferes with pain signaling. Here, we report confirmed hits from a small molecule and natural product screen of nearly 0.5 million compounds targeting the VEGF-A binding site on NRP-1. We identified nine chemical series with lead- or drug-like physicochemical properties. Using ELISA, we demonstrate that six compounds disrupt VEGF-A-NRP-1 binding more effectively than EG00229, a known NRP-1 inhibitor. Secondary validation in cells revealed that all tested compounds inhibited VEGF-A triggered VEGFR2 phosphorylation. Further, two compounds displayed robust inhibition of a recombinant vesicular stomatitis virus protein that utilizes the SARS-CoV-2 Spike for entry and fusion. These compounds represent a first step in a renewed effort to develop small molecule inhibitors of the VEGF-A/NRP-1 signaling for the treatment of neuropathic pain and cancer with the added potential of inhibiting SARS-CoV-2 virus entry.


Assuntos
COVID-19 , Neuropilina-1 , Humanos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Fator A de Crescimento do Endotélio Vascular , Internalização do Vírus
18.
Stem Cell Reports ; 16(10): 2459-2472, 2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34525378

RESUMO

The pathogenicity of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has been attributed to its ability to enter through the membrane-bound angiotensin-converting enzyme 2 (ACE2) receptor. Therefore, it has been heavily speculated that angiotensin-converting enzyme inhibitor (ACEI) or angiotensin receptor blocker (ARB) therapy may modulate SARS-CoV-2 infection. In this study, exposure of human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) and human endothelial cells (hECs) to SARS-CoV-2 identified significant differences in protein coding genes involved in immunity, viral response, and cardiomyocyte/endothelial structure. Specifically, transcriptome changes were identified in the tumor necrosis factor (TNF), interferon α/ß, and mitogen-activated protein kinase (MAPK) (hPSC-CMs) as well as nuclear factor kappa-B (NF-κB) (hECs) signaling pathways. However, pre-treatment of hPSC-CMs or hECs with two widely prescribed antihypertensive medications, losartan and lisinopril, did not affect the susceptibility of either cell type to SARS-CoV-2 infection. These findings demonstrate the toxic effects of SARS-CoV-2 in hPSC-CMs/hECs and, taken together with newly emerging multicenter trials, suggest that antihypertensive drug treatment alone does not alter SARS-CoV-2 infection.


Assuntos
Anti-Hipertensivos/farmacologia , Tratamento Farmacológico da COVID-19 , Células Endoteliais/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , COVID-19/genética , Células Cultivadas , Suscetibilidade a Doenças , Células Endoteliais/metabolismo , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Humanos , Lisinopril/farmacologia , Losartan/farmacologia , Miócitos Cardíacos/metabolismo , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/fisiologia , Transcriptoma/efeitos dos fármacos
19.
Cell Rep ; 36(8): 109604, 2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34411541

RESUMO

Unrelated individuals can produce genetically similar clones of antibodies, known as public clonotypes, which have been seen in responses to different infectious diseases, as well as healthy individuals. Here we identify 37 public clonotypes in memory B cells from convalescent survivors of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection or in plasmablasts from an individual after vaccination with mRNA-encoded spike protein. We identify 29 public clonotypes, including clones recognizing the receptor-binding domain (RBD) in the spike protein S1 subunit (including a neutralizing, angiotensin-converting enzyme 2 [ACE2]-blocking clone that protects in vivo) and others recognizing non-RBD epitopes that bind the S2 domain. Germline-revertant forms of some public clonotypes bind efficiently to spike protein, suggesting these common germline-encoded antibodies are preconfigured for avid recognition. Identification of large numbers of public clonotypes provides insight into the molecular basis of efficacy of SARS-CoV-2 vaccines and sheds light on the immune pressures driving the selection of common viral escape mutants.

20.
bioRxiv ; 2021 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-33972937

RESUMO

Unrelated individuals can produce genetically similar clones of antibodies, known as public clonotypes, which have been seen in responses to different infectious diseases as well as healthy individuals. Here we identify 37 public clonotypes in memory B cells from convalescent survivors of SARS-CoV-2 infection or in plasmablasts from an individual after vaccination with mRNA-encoded spike protein. We identified 29 public clonotypes, including clones recognizing the receptor-binding domain (RBD) in the spike protein S1 subunit (including a neutralizing, ACE2-blocking clone that protects in vivo ), and others recognizing non-RBD epitopes that bound the heptad repeat 1 region of the S2 domain. Germline-revertant forms of some public clonotypes bound efficiently to spike protein, suggesting these common germline-encoded antibodies are preconfigured for avid recognition. Identification of large numbers of public clonotypes provides insight into the molecular basis of efficacy of SARS-CoV-2 vaccines and sheds light on the immune pressures driving the selection of common viral escape mutants.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa