Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Cell Sci ; 136(19)2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37655670

RESUMO

Genomes comprise a large fraction of repetitive sequences folded into constitutive heterochromatin, which protect genome integrity and cell identity. De novo formation of heterochromatin during preimplantation development is an essential step for preserving the ground-state of pluripotency and the self-renewal capacity of embryonic stem cells (ESCs). However, the molecular mechanisms responsible for the remodeling of constitutive heterochromatin are largely unknown. Here, we identify that DAXX, an H3.3 chaperone essential for the maintenance of mouse ESCs in the ground state, accumulates in pericentromeric regions independently of DNA methylation. DAXX recruits PML and SETDB1 to promote the formation of heterochromatin, forming foci that are hallmarks of ground-state ESCs. In the absence of DAXX or PML, the three-dimensional (3D) architecture and physical properties of pericentric and peripheral heterochromatin are disrupted, resulting in de-repression of major satellite DNA, transposable elements and genes associated with the nuclear lamina. Using epigenome editing tools, we observe that H3.3, and specifically H3.3K9 modification, directly contribute to maintaining pericentromeric chromatin conformation. Altogether, our data reveal that DAXX is crucial for the maintenance and 3D organization of the heterochromatin compartment and protects ESC viability.


Assuntos
Heterocromatina , Histonas , Animais , Camundongos , Histonas/genética , Heterocromatina/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Cromatina , Células-Tronco Embrionárias/metabolismo
2.
EMBO Rep ; 24(9): e56194, 2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37432066

RESUMO

Mouse embryonic stem cells (ESCs) display pluripotency features characteristic of the inner cell mass of the blastocyst. Mouse embryonic stem cell cultures are highly heterogeneous and include a rare population of cells, which recapitulate characteristics of the 2-cell embryo, referred to as 2-cell-like cells (2CLCs). Whether and how ESC and 2CLC respond to environmental cues has not been fully elucidated. Here, we investigate the impact of mechanical stress on the reprogramming of ESC to 2CLC. We show that hyperosmotic stress induces 2CLC and that this induction can occur even after a recovery time from hyperosmotic stress, suggesting a memory response. Hyperosmotic stress in ESCs leads to accumulation of reactive-oxygen species (ROS) and ATR checkpoint activation. Importantly, preventing either elevated ROS levels or ATR activation impairs hyperosmotic-mediated 2CLC induction. We further show that ROS generation and the ATR checkpoint act within the same molecular pathway in response to hyperosmotic stress to induce 2CLCs. Altogether, these results shed light on the response of ESC to mechanical stress and on our understanding of 2CLC reprogramming.


Assuntos
Células-Tronco Embrionárias , Transdução de Sinais , Animais , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Células-Tronco Embrionárias/metabolismo , Células-Tronco Embrionárias Murinas/metabolismo , Blastocisto/metabolismo , Diferenciação Celular
3.
Nat Commun ; 13(1): 5726, 2022 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-36175410

RESUMO

Membrane-less organelles are condensates formed by phase separation whose functions often remain enigmatic. Upon oxidative stress, PML scaffolds Nuclear Bodies (NBs) to regulate senescence or metabolic adaptation. PML NBs recruit many partner proteins, but the actual biochemical mechanism underlying their pleiotropic functions remains elusive. Similarly, PML role in embryonic stem cell (ESC) and retro-element biology is unsettled. Here we demonstrate that PML is essential for oxidative stress-driven partner SUMO2/3 conjugation in mouse ESCs (mESCs) or leukemia, a process often followed by their poly-ubiquitination and degradation. Functionally, PML is required for stress responses in mESCs. Differential proteomics unravel the KAP1 complex as a PML NB-dependent SUMO2-target in arsenic-treated APL mice or mESCs. PML-driven KAP1 sumoylation enables activation of this key epigenetic repressor implicated in retro-element silencing. Accordingly, Pml-/- mESCs re-express transposable elements and display 2-Cell-Like features, the latter enforced by PML-controlled SUMO2-conjugation of DPPA2. Thus, PML orchestrates mESC state by coordinating SUMO2-conjugation of different transcriptional regulators, raising new hypotheses about PML roles in cancer.


Assuntos
Arsênio , Sumoilação , Animais , Elementos de DNA Transponíveis , Células-Tronco Embrionárias , Camundongos , Corpos Nucleares , Fatores de Transcrição
4.
Brief Funct Genomics ; 19(2): 101-110, 2020 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-32048721

RESUMO

The spatial organization of the genome contributes to essential functions such as transcription and chromosome integrity maintenance. The principles governing nuclear compartmentalization have been the focus of considerable research over the last decade. In these studies, the genome-nuclear structure interactions emerged as a main driver of this particular 3D genome organization. In this review, we describe the interactions between the genome and four major landmarks of the nucleus: the nuclear lamina, the nuclear pores, the pericentromeric heterochromatin and the nucleolus. We present the recent studies that identify sequences bound to these different locations and address the tethering mechanisms. We give an overview of the relevance of this organization in development and disease. Finally, we discuss the dynamic aspects and self-organizing properties that allow this complex architecture to be inherited.


Assuntos
Núcleo Celular/metabolismo , Lâmina Nuclear/metabolismo , Poro Nuclear/metabolismo , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa