Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 24(19): 22177-88, 2016 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-27661952

RESUMO

We demonstrate polarization-selective microlensing and waveguiding of laser beams by birefringent profiles in bulk nematic fluids using numerical modelling. Specifically, we show that radial escaped nematic director profiles with negative birefringence focus and guide light with radial polarization, whereas the opposite - azimuthal - polarization passes through unaffected. A converging lens is realized in a nematic with negative birefringence, and a diverging lens in a positive birefringence material. Tuning of such single-liquid lenses by an external low-frequency electric field and by adjusting the profile and intensity of the beam itself is demonstrated, combining external control with intrinsic self-adaptive focusing. Escaped radial profiles of birefringence are shown to act as single-liquid waveguides with a single distinct eigenmode and low attenuation. Finally, this work is an approach towards creating liquid photonic elements for all-soft matter photonics.

2.
Artigo em Inglês | MEDLINE | ID: mdl-25215745

RESUMO

We report that light beams, guided along liquid crystal defect lines, can be transformed into vector beams with various polarization profiles. Using finite-difference time-domain numerical solving of Maxwell equations, we confirm that the defect in the orientational order of the liquid crystal induces a defect in the light field with twice the winding number of the liquid crystal defect, coupling the topological invariants of both fields. For example, it is possible to transform uniformly polarized light into light with a radial polarization profile. Our approach also correctly yields a zero-intensity region near the defect core, which is always present in areas of discontinuous light polarization or phase. Using circularly polarized incident light, we show that defects with noninteger winding numbers can be obtained, where topological constants are preserved by phase vortices, demonstrating coupling between the light's spin, orbital angular momentum, and polarization profile. Further, we find that an ultrafast femtosecond laser pulse traveling along a defect line splits into multiple intensity regions, again depending on the defect's winding number, allowing applications in beam steering and filtering. Finally, our approach describing the generation of complex optical fields via coupling with topological defect lines in optically birefringent nematic fluids can be easily extended to high-intensity beams that affect nematic ordering.


Assuntos
Luz , Cristais Líquidos , Simulação por Computador , Fenômenos Eletromagnéticos , Modelos Teóricos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa