Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 630(8015): 141-148, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38778097

RESUMO

Fentanyl is a powerful painkiller that elicits euphoria and positive reinforcement1. Fentanyl also leads to dependence, defined by the aversive withdrawal syndrome, which fuels negative reinforcement2,3 (that is, individuals retake the drug to avoid withdrawal). Positive and negative reinforcement maintain opioid consumption, which leads to addiction in one-fourth of users, the largest fraction for all addictive drugs4. Among the opioid receptors, µ-opioid receptors have a key role5, yet the induction loci of circuit adaptations that eventually lead to addiction remain unknown. Here we injected mice with fentanyl to acutely inhibit γ-aminobutyric acid-expressing neurons in the ventral tegmental area (VTA), causing disinhibition of dopamine neurons, which eventually increased dopamine in the nucleus accumbens. Knockdown of µ-opioid receptors in VTA abolished dopamine transients and positive reinforcement, but withdrawal remained unchanged. We identified neurons expressing µ-opioid receptors in the central amygdala (CeA) whose activity was enhanced during withdrawal. Knockdown of µ-opioid receptors in CeA eliminated aversive symptoms, suggesting that they mediate negative reinforcement. Thus, optogenetic stimulation caused place aversion, and mice readily learned to press a lever to pause optogenetic stimulation of CeA neurons that express µ-opioid receptors. Our study parses the neuronal populations that trigger positive and negative reinforcement in VTA and CeA, respectively. We lay out the circuit organization to develop interventions for reducing fentanyl addiction and facilitating rehabilitation.


Assuntos
Fentanila , Receptores Opioides mu , Reforço Psicológico , Animais , Feminino , Masculino , Camundongos , Analgésicos Opioides/farmacologia , Analgésicos Opioides/administração & dosagem , Núcleo Central da Amígdala/citologia , Núcleo Central da Amígdala/efeitos dos fármacos , Núcleo Central da Amígdala/metabolismo , Dopamina/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Fentanila/farmacologia , Camundongos Endogâmicos C57BL , Núcleo Accumbens/citologia , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Transtornos Relacionados ao Uso de Opioides/metabolismo , Transtornos Relacionados ao Uso de Opioides/patologia , Optogenética , Receptores Opioides mu/metabolismo , Síndrome de Abstinência a Substâncias/metabolismo , Síndrome de Abstinência a Substâncias/patologia , Área Tegmentar Ventral/citologia , Área Tegmentar Ventral/efeitos dos fármacos , Área Tegmentar Ventral/metabolismo
2.
Neuropsychopharmacology ; 45(12): 2020-2029, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32585679

RESUMO

Obsessive-compulsive disorder (OCD) is a circuit disorder involving corticostriatal projections, which play a role in motor control. The Sapap3-knockout (KO) mouse is a mouse model to study OCD and recapitulates OCD-like compulsion through excessive grooming behavior, with skin lesions appearing at advanced age. Deficits in corticostriatal control provide a link to the pathophysiology of OCD. However, there remain significant gaps in the characterization of the Sapap3-KO mouse, with respect to age, specificity of synaptic dysfunction, and locomotor phenotype. We therefore investigated the corticostriatal synaptic phenotype of Sapap3-KO mice using patch-clamp slice electrophysiology, in adult mice and with projection specificity. We also analyzed grooming across age and locomotor phenotype with a novel, unsupervised machine learning technique (MoSeq). Increased grooming in Sapap3-KO mice without skin lesions was age independent. Synaptic deficits persisted in adulthood and involved the projections from the motor cortices and cingulate cortex to the dorsolateral and dorsomedial striatum. Decreased synaptic strength was evident at the input from the primary motor cortex by reduction in AMPA receptor function. Hypolocomotion, i.e., slowness of movement, was consistently observed in Sapap3-KO mice. Our findings emphasize the utility of young adult Sapap3-KO mice to investigate corticostriatal synaptic dysfunction in motor control.


Assuntos
Proteínas do Tecido Nervoso , Transtorno Obsessivo-Compulsivo , Animais , Corpo Estriado/metabolismo , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/metabolismo , Transmissão Sináptica
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa