Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Total Environ ; 823: 153701, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35134420

RESUMO

Global warming is causing the increase in intensity and frequency of heatwaves, which are often associated with mass mortality events of marine organisms from shallow and mesophotic rocky habitats, including gorgonians and other sessile organisms. We investigated the microbiome responses of the gorgonians Paramuricea clavata, Eunicella cavolini, and the red coral Corallium rubrum to the episodic temperature anomalies detected in the North Western Mediterranean, during August 2011. Although the investigated corals showed no signs of visible necrosis, the abundance of associated Bacteria and Archaea increased with increasing seawater temperature, suggesting their temperature-dependent proliferation. Coral microbiomes were highly sensitive to thermal anomaly amplitude and exhibited increased bacterial diversity to greater thermal shifts. This effect was explained by the decline of dominant bacterial members and the increase of new, rare and opportunistic taxa, including pathogens, revealing a direct effect of heatwave-induced alteration of the microbiomes and not a secondary consequence of coral necrosis.


Assuntos
Antozoários , Microbiota , Animais , Antozoários/fisiologia , Bactérias , Recifes de Corais , Ecossistema , Florestas , Água do Mar/microbiologia
2.
Environ Pollut ; 292(Pt B): 118415, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34718087

RESUMO

The cumulative impact of microplastic and organic enrichment is still largely unknown. Here, we investigated the microplastic contamination, the organic enrichment and their effects on meiofaunal distribution and diversity in two islands of the Maldivian archipelago: one more pristine, and another strongly anthropized. Field studies were coupled with manipulative experiments in which microplastic polymers were added to sediments from the non-anthropized island (i.e., without organic enrichment) to assess the relative effect of microplastic pollution on meiofauna assemblages. Our results reveal that the impact of microplastic contamination on meiofaunal abundance and taxa richness was more significant in the anthropized island, which was also characterized by a significant organic enrichment. Meiofauna exposed experimentally to microplastic contamination showed: i) the increased abundance of opportunistic nematodes and copepods and ii) a shift in the trophic structure, increasing relevance in epistrate-feeder nematodes. Based on all these results, we argue that the coexistence of chronic organic enrichment and microplastics can significantly increase the ecological impacts on meiofaunal assemblages. Since microplastic pollution in the oceans is predicted to increase in the next decades, its negative effects on benthic biodiversity and functioning of tropical ecosystems are expected to worsen especially when coupled with human-induced eutrophication. Urgent actions and management plans are needed to avoid the cumulative impact of microplastic and organic enrichment.


Assuntos
Microplásticos , Poluentes Químicos da Água , Animais , Biodiversidade , Ecossistema , Monitoramento Ambiental , Sedimentos Geológicos , Humanos , Plásticos , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
3.
Commun Biol ; 4(1): 431, 2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33785849

RESUMO

Microplastics are recognised as a potential global threat to marine ecosystems, but the biological mechanisms determining their impact on marine life are still largely unknown. Here, we investigated the effects of microplastics on the red coral, a long-lived habitat-forming organism belonging to the Corallium genus, which is present at almost all latitudes from shallow-water to deep-sea habitats. When exposed to microplastics, corals preferentially ingest polypropylene, with multiple biological effects, from feeding impairment to mucus production and altered gene expression. Microplastics can alter the coral microbiome directly and indirectly by causing tissue abrasions that allow the proliferation of opportunistic bacteria. These multiple effects suggest that microplastics at the concentrations present in some marine areas and predicted for most oceans in the coming decades, can ultimately cause coral death. Other habitat-forming suspension-feeding species are likely subjected to similar impacts, which may act synergistically with climate-driven events primarily responsible for mass mortalities.


Assuntos
Antozoários/efeitos dos fármacos , Microplásticos/toxicidade , Polipropilenos/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Recifes de Corais
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa