Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
1.
Nano Lett ; 22(21): 8626-8632, 2022 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-36256878

RESUMO

Organometallic sandwich complexes are versatile molecular systems that have been recently employed for single-molecule manipulation and spin sensing experiments. Among related organometallic compounds, the mixed-sandwich S = 1/2 complex (η8-cyclooctatetraene)(η5-cyclopentadienyl)titanium, here [CpTi(cot)], has attracted interest as a spin qubit because of the long coherence time. Here the structural and chemical properties of [CpTi(cot)] on Au(111) are investigated at the monolayer level by experimental and computational methods. Scanning tunneling microscopy suggests that adsorption occurs in two molecular orientations, lying and standing, with a 3:1 ratio. XPS data evidence that a fraction of the molecules undergo partial electron transfer to gold, while our computational analysis suggests that only the standing molecules experience charge delocalization toward the surface. Such a phenomenon depends on intermolecular interactions that stabilize the molecular packing in the monolayer. This orientation-dependent molecule-surface hybridization opens exciting perspectives for selective control of the molecule-substrate spin delocalization in hybrid interfaces.


Assuntos
Elétrons , Titânio , Propriedades de Superfície , Microscopia de Tunelamento/métodos , Adsorção
2.
Nano Lett ; 22(21): 8509-8518, 2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36315593

RESUMO

Lithium metal batteries (LMBs) will be a breakthrough in automotive applications, but they require the development of next-generation solid-state electrolytes (SSEs) to stabilize the anode interface. Polymer-in-ceramic PEO/TiO2 nanocomposite SSEs show outstanding properties, allowing unprecedented LMBs durability and self-healing capabilities. However, the mechanism underlying the inhibition/delay of dendrite growth is not well understood. In fact, the inorganic phase could act as both a chemical and a mechanical barrier to dendrite propagation. Combining advanced in situ and ex situ experimental techniques, we demonstrate that oligo(ethylene oxide)-capped TiO2, although chemically inert toward lithium metal, imparts SSE with mechanical and dynamical properties particularly favorable for application. The self-healing characteristics are due to the interplay between mechanical robustness and high local polymer mobility which promotes the disruption of the electric continuity of the lithium dendrites (razor effect).

3.
Inorg Chem ; 61(14): 5572-5587, 2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35348317

RESUMO

The mechanistic investigations between Cu(II) and the anisotropic lanthanides (Ln(III)) are not much explored to date. This is due to the complicated energy spectrum which arises due to the orbital angular momentum of anisotropic lanthanides. Interestingly, the exchange coupling J in Ln(III)-Cu(II) systems was found to be antiferromagnetic for <4f7 metal ions and ferromagnetic for ≥4f7 metal ions, while the net magnitude of JTotal strength gradually decreases moving from f1 to f13. While this is established in several examples, the reason for this intriguing trend is not rationalized. In this article, we have taken up these challenging tasks by synthesizing a family of complexes with the general molecular formula [Cu2Ln(HL)4(NO3)](NO3)2, where Ln = La (1-La), Ce (2-Ce), Pr (3-Pr), Gd (4-Gd), Tb (5-Tb), Dy (6-Dy), and Ho (7-Ho) and HL = C15H15N1O3; (2-methoxy-6-[(E)-2'-hydroxymethyl-phenyliminomethyl]-phenolate) is a monodeprotonated tridentate Schiff base ligand. Detailed dc magnetic susceptibility measurements performed for all the complexes reveal that the Cu(II) ion is coupled ferromagnetically to the respective Ln(III) ion, which has more than seven electrons in the 4f shell, while an antiferromagnetic coupling is witnessed if Ln(III) has less than seven electrons. The strength of the exchange coupling constant was quantitatively determined for representative complexes from the high-field/high-frequency electron paramagnetic resonance spectroscopy which follows the order of 4-Gd (1.50(10) cm-1) > 5-Tb (1.18(10) cm-1) > 6-Dy (0.56(10) cm-1 based on the -2JCu-Ln(SCu1→·JLnz→+SCu2→·JLnz→) spin Hamiltonian. The increased axiality in 5-Tb and 6-Dy due to the presence of 3d ions in the near vicinity of an oblate ion and the increased exchange coupling strength between Cu(II) and Tb(III) or Dy(III) is the ideal combination to stabilize magnetic bistability in these complexes in the absence of an external magnetic field with the effective energy barrier of 15.7 K (τo = 2.49 × 10-6 s) and 12.6 K (τo = 1.70 × 10-5 s), respectively. To rationalize this experimental trend, we have performed ab initio CASSCF and DFT calculations. To compute the J values, we have employed POLY_ANISO routines and utilized the computed data to establish the generic mechanism of magnetic coupling in {Cu-Ln-Cu} motifs. These mechanistic findings reveal the importance of 5d orbitals and their energy with respect to the dx2-y2 orbital of Cu(II) ions in controlling the magnetic coupling of {Cu-4f} complexes.

4.
Molecules ; 26(5)2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33807763

RESUMO

The Sustainable Development Goals (SDGs) have been proposed to give a possible future to humankind. Due to the multidimensional characteristic of sustainability, SDGs need research activities with a multidisciplinary approach. This work aims to provide a critical review of the results concerning sustainable materials obtained by Italian researchers affiliated to the National Interuniversity Consortium of Materials Science and Technology (INSTM) and their contribution to reaching specific indicators of the 17 SDGs. Data were exposed by using the Web of Science (WoS) database. In the investigated period (from 2016 to 2020), 333 works about sustainable materials are found and grouped in one of the following categories: chemicals (33%), composites (11%), novel materials for pollutants sequestration (8%), bio-based and food-based materials (10%), materials for green building (8%), and materials for energy (29%). This review contributes to increasing the awareness of several of the issues concerning sustainable materials but also to encouraging the researchers to focus on SDGs' interconnections. Indeed, the mapping of the achievements can be relevant to the decision-makers to identify the opportunities that materials can offer to achieve the final goals. In this frame, a "Sustainable Materials Partnership for SDGs" is envisaged for more suitable resource management in the future.


Assuntos
Materiais Biocompatíveis , Desenvolvimento Sustentável , Fontes Geradoras de Energia , Poluentes Ambientais/química , Poluentes Ambientais/isolamento & purificação , Alimentos , Objetivos , Itália
5.
J Am Chem Soc ; 142(32): 13908-13916, 2020 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-32674563

RESUMO

Magnetochiral dichroism (MChD) is a nonreciprocal manifestation of light-matter interaction that can be observed in chiral magnetized systems. It features a differential absorption of unpolarized light depending on the relative orientation of the magnetic field and the light wavevector and on the absolute configuration of the system. The relevance of this effect for optical readout of magnetic data calls for a complete understanding of the microscopic parameters driving MChD with an easy-accessible and nondamaging light source, such as visible light. For this purpose, here we report on MChD detected with visible light on a chiral magnetic helix formulated as [MnIII(cyclam)(SO4)]ClO4·H2O (cyclam = 1,4,8,11-tetraazacyclotetradecane) featuring antiferromagnetically coupled anisotropic MnIII ions. Alternate current susceptibility measurements revealed the existence of a single-chain magnet behavior hidden below the canted antiferromagnetism (TN = 5.8 K) already evidenced by direct current magnetometry. A detailed analysis of the optical absorption gives access to the value of the zero-field splitting parameter D (2.9 cm-1), which quantifies the magnetic anisotropy of the MnIII centers. Below the magnetic ordering temperature of the material, the MChD spectra exhibit intense absolute configuration dependent MChD signals reaching record values of ca. 12% of the absorbed intensity for the two electronic transitions most influenced by the spin-orbit coupling of the MnIII ion. These findings set a clear route toward the design and preparation of highly MChD-responsive molecular materials.

6.
Nat Mater ; 18(4): 329-334, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30778229

RESUMO

The possibility to operate on magnetic materials through the application of electric rather than magnetic fields-promising faster, more compact and energy efficient circuits-continues to spur the investigation of magnetoelectric effects. Symmetry considerations, in particular the lack of an inversion centre, characterize the magnetoelectric effect. In addition, spin-orbit coupling is generally considered necessary to make a spin system sensitive to a charge distribution. However, a magnetoelectric effect not relying on spin-orbit coupling is appealing for spin-based quantum technologies. Here, we report the detection of a magnetoelectric effect that we attribute to an electric field modulation of the magnetic exchange interaction without atomic displacement. The effect is visible in electron paramagnetic resonance absorption of molecular helices under electric field modulation and confirmed by specific symmetry properties and spectral simulation.


Assuntos
Eletricidade , Campos Magnéticos , Compostos Organometálicos/química , Manganês/química , Modelos Moleculares , Conformação Molecular
7.
Inorg Chem ; 59(22): 16591-16598, 2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-33119277

RESUMO

A series of isomorphous mononuclear complexes of Ln(III) ions comprising one stable tripodal oxazolidine nitroxyl radical were obtained in acetonitrile media starting from nitrates. The compounds, [LnRad(NO3)3] (Ln = Gd, Tb, Dy, Tm, Y; Rad = 4,4-dimethyl-2,2-bis(pyridin-2-yl)-1,3-oxazolidine-3-oxyl), have a molecular structure. Their coordination polyhedron, LnO7N2, can be described as a tricapped trigonal prism with symmetry not far from D3h. The extracted value of 23 cm-1 for the antiferromagnetic coupling of Gd-Rad established from the DC magnetic and EPR data is a record strength for the complexes of 4f elements with nitroxyl radicals. The terbium derivative displays frequency-dependent out-of-phase signals in zero field, indicating single-molecule magnetic behavior. With an applied field of 0.1 T, an effective barrier of 57 cm-1 is found.

8.
J Nanosci Nanotechnol ; 19(8): 4946-4953, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-30913806

RESUMO

The optical and magneto-optical (MO) properties of magneto-plasmonic nanocomposite films made up of a transparent polymer with a dispersion of cobalt ferrite (CFO) nanoparticles (NPs) and different concentrations of Au NPs are investigated. The volumetric concentrations of CFO and Au NPs, around 3%, and below 7‰ respectively, are below the percolation limit, and hence the nanocom-posite films constitute models for investigating the influence of the electromagnetic field generated at the surface plasmon resonance of Au NPs on the magneto-optical properties of CFO NPs. The plasmon resonance is present in these magneto-plasmonic composites, red-shifted with respect to the bare Au NPs and covering the spectral region where charge-transfer and crystal field MO transitions can be excited. Moreover, the magneto-optical hysteresis loops were measured in the whole spectral region. We observe that the hysteresis loops shape is a fingerprint of the different MO transitions of the CFO NPs. The strength of the MO peak around 750 nm, corresponding to the Crystal Field transition is damped respect to the corresponding peak of the CFO NPs. The strength of this peak evolves non-monotonically with the Au NPs concentration. On the other hand, the MO band around 550 nm, excited by Charge Transfer transitions, changes sign when Au NPs are present. In addition, a second MO contribution is observed. Our results demonstrate that the interactions between plasmon resonance and MO effects are not only determined by the stronger local electromagnetic fields at the resonance but they depend on the type MO transition that is involved in these oxides. This study helps to understand and design the magneto plasmonic nano-structures and applications, for example in biomedicine and sensing, in which random and weak dipolar interparticle interactions between plasmonic and magnetic nanostructures are present.

9.
J Nanosci Nanotechnol ; 19(8): 5020-5026, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30913816

RESUMO

We present multifunctional, biocompatible and biodegradable magnetic nanovectors based on different polyamidoamine (PAA) polymers tailored with different diagnostic and therapeutic properties. Using maghemite nanoparticles with average size 15.5 ± 2.8 nm prepared by thermal decomposition, superparamagnetic nanovectors were obtained by coating the nanoparticles with synthetic polymers of PAA. These have a segmented copolymer structure, and bear PAA segments containing different amount of carboxyl groups per repeating units together with PEG segments. These copolymers are thought to combine the binding properties of the carboxylated PAA segments to inorganic nanoparticles, with the stealth properties of the PEG ones. The magnetic, hyperthermal and relaxometric properties of the synthesized samples were investigated. Magnetic measurements revealed that the samples are superparamagnetic at room temperature and the overall magnetic behavior is not affected by the functionalization process. Calorimetric measurements demonstrated a good heating efficiency at alternating magnetic field parameters below the human tolerability threshold (SAR of ca. 70 W/g at 260 Hz and 10.8 kA/m). 1H-NMR relaxivities were relevant compared to the values of the commercial contrast agents over the whole investigated frequency range.


Assuntos
Nanopartículas , Polímeros , Humanos , Nanopartículas/uso terapêutico , Poliaminas , Medicina de Precisão
10.
Nano Lett ; 17(3): 1899-1905, 2017 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-28165249

RESUMO

The magnetic properties of some single molecule magnets (SMM) on surfaces can be strongly modified by the molecular packing in nanometric films/aggregates or by interactions with the substrate, which affect the molecular orientation and geometry. Detailed investigations of the magnetism of thin SMM films and nanostructures are necessary for the development of spin-based molecular devices, however this task is challenged by the limited sensitivity of laboratory-based magnetometric techniques and often requires access to synchrotron light sources to perform surface sensitive X-ray magnetic circular dichroism (XMCD) investigations. Here we show that low-temperature magnetic force microscopy is an alternative powerful laboratory tool able to extract the field dependence of the magnetization and to identify areas of in-plane and perpendicular magnetic anisotropy in microarrays of the SMM terbium(III) bis-phthalocyaninato (TbPc2) neutral complex grown as nanosized films on SiO2 and perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA), and this is in agreement with data extracted from nonlocal XMCD measurements performed on homogeneous TbPc2/PTCDA films.

11.
Inorg Chem ; 56(19): 11668-11675, 2017 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-28915022

RESUMO

The reactions of cobalt(II) perchlorate with a diazine tetratopic helicand, H4L, in the presence of sodium carbonate afford two coordination polymers constructed from tetranuclear anionic helicates as building blocks: ∞3[Co4L3Na4(H2O)4]·4H2O (1) and ∞2[Co5L3Na2(H2O)9]·2.7H2O·DMF (2). The tetranuclear triple-stranded helicates, {CoII4L3}4-, are connected in 1 by sodium(I) ions and in 2 by sodium(I) and cobalt(II) ions (H4L results from the condensation reaction between 3-formylsalicylic acid and hydrazine). The crystal structures of the two compounds have been solved. In both compounds the anionic helicates interact with the assembling cations through the carboxylato oxygen atoms. Compound 2 features chains resulting from connecting the tetranuclear helicates through cobalt(II) ions. The analysis of the magnetic properties of compounds 1 and 2 evidenced a dominant antiferromagnetic coupling for 1, resulting in a diamagnetic ground state. In contrast, the magnetic behavior of 2 is dominated at low temperature by the CoII ion which connects the antiferromagnetically coupled {CoII4} helical moieties. The ac magnetic measurements for 2 reveal the occurrence of slow relaxation of the magnetization that is due to the single, uncorrelated cobalt(II) ions, which are diluted in an essentially diamagnetic matrix of {CoII4} moieties (ΔEeff = 26.7 ± 0.3 cm-1 with τ0 = (2.3 ± 0.2) × 10-6 s).

12.
Chemistry ; 22(36): 12849-58, 2016 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-27465998

RESUMO

We report the synthesis, structure, and spectroscopic and dynamic magnetic properties of a series of heterodinuclear complexes, [ZnLn(LH4 )2 ](NO3 )3 ⋅6 H2 O (Ln=Nd, Tb, Dy, Ho, Er, and Yb), with the singly deprotonated form of a new compartmentalized Schiff-base ligand, LH5 . The Ln(III) ions in these systems show a distorted square-antiprism geometry with an LnO8 coordination sphere. EPR spectroscopy and DC magnetic studies have shown that the anisotropic nature of the complexes is far more complicated than predicted on the basis of a simple electrostatic model. Among the investigated systems, only the Dy(III) derivative showed single-ion magnet behavior, in zero and an applied magnetic field, both in pure polycrystalline samples and in a series of polycrystalline samples with different degrees of dilution at the single-crystal level in the isostructural Y(III) derivative. The rich dynamics observed as functions of frequency, field, and temperature reveals that multiple relaxation mechanisms are at play, resulting in a barrier of 189 cm(-1) , which is among the highest reported for a dinuclear Zn-Dy system. Analysis of the dynamic behavior as a function of dilution degree further evidenced the persistence of non-negligible intermolecular interactions, even at the lowest concentration of 1 %.

13.
Inorg Chem ; 53(14): 7738-47, 2014 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-24998701

RESUMO

Three new binuclear helicates, [M2L2]·3DMF (M = Co(II), 1, Zn(II), 3) and [Cu2L2]·DMF·0.4H2O (2), have been assembled using the helicand H2L that results from the 2:1 condensation reaction between o-vanillin and 4,4'-diaminodiphenyl ether. The metal ions within the binuclear helicates are tetracoordinated with a distorted tetrahedral geometry. Direct current magnetic characterization and EPR spectroscopy of the Co(II) derivative point to an easy axis type anisotropy for both Co(II) centers, with a separation of at least 55 K between the two doublets. Dynamic susceptibility measurements evidence slow relaxation of the magnetization in an applied dc field. Since the distance between the cobalt ions is quite large (11.59 Å), this is attributed in a first instance to the intrinsic properties of each Co(II) center (single-ion magnet behavior). However, the temperature dependence of the relaxation rate and the absence of slow dynamics in the Zn(II)-doped sample suggest that neither the simple Orbach mechanism nor Raman or direct processes can account for the relaxation, and collective phenomena have to be invoked for the observed behavior. Finally, due to the rigidization of the two organic ligands upon coordination, the pure zinc derivative exhibits fluorescence emission in solution, which was analyzed in terms of fluorescence quantum yields and lifetimes.

14.
Nano Lett ; 13(10): 4785-9, 2013 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-24050533

RESUMO

The quest for efficient ways of modulating localized surface plasmon resonance is one of the frontiers in current research in plasmonics; the use of a magnetic field as a source of modulation is among the most promising candidates for active plasmonics. Here we report the observation of magnetoplasmonic modes on colloidal gold nanoparticles detected by means of magnetic circular dichroism (MCD) spectroscopy and provide a model that is able to rationalize and reproduce the experiment with unprecedented qualitative and quantitative accuracy. We believe that the steep slope observed at the plasmon resonance in the MCD spectrum can be very efficient in detecting changes in the refractive index of the surrounding medium, and we give a simple proof of principle of its possible implementation for magnetoplasmonic refractometric sensing.


Assuntos
Técnicas Biossensoriais , Dicroísmo Circular , Nanopartículas Metálicas/química , Coloides/química , Ouro/química , Campos Magnéticos , Refratometria
15.
Chemistry ; 19(10): 3445-50, 2013 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-23355391

RESUMO

The successful thin-film deposition of a pyrene-substituted nitronyl nitroxide radical under controlled conditions has been demonstrated. The electronic properties, chemical environment at the interface, and morphology of the thin films have been investigated by a multitechnique approach. Spectroscopic and morphological analyses indicate a Stranski-Krastanov growth mode and weak physisorption of molecules onto the metallic surface. Electron spin resonance (ESR) spectroscopy shows that evaporation processes and deposition do not affect the paramagnetic character of the molecules. Useful concepts for the engineering of new, purely organic-based magnets, which may open the way to fruitful exploitation of organic molecular-beam deposition for assembly on solid surfaces in view of future technological applications, are presented.


Assuntos
Ouro/química , Nanotecnologia/métodos , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Campos Magnéticos , Estrutura Molecular , Espectroscopia Fotoeletrônica/métodos , Propriedades de Superfície
16.
Angew Chem Int Ed Engl ; 52(1): 350-4, 2013 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-23208792

RESUMO

Spotting trends: Upon going from Tb(III) to Yb(III) centers in the complexes of the DOTA(4-) ligand, a reorientation of the easy axis of magnetization from perpendicular to parallel to the Ln-O bond of the apical water molecule is experimentally observed and theoretically predicted (SMM=single-molecule magnet). Only ions with an odd number of electrons show slow relaxation of the magnetization.

17.
Materials (Basel) ; 16(14)2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37512195

RESUMO

Physical Vapor Deposition (PVD) is a widely utilized process in various industrial applications, serving as a protective and hard coating. However, its presence in fields like fashion has only recently emerged, as electroplating processes had previously dominated this reality. The future looks toward the replacement of the most hazardous and toxic electrochemical processes, especially those involving Cr(VI) and cyanide galvanic baths, which have been restricted by the European Union. Unfortunately, a complete substitution with PVD coatings is not feasible. Currently, the combination of both techniques is employed to achieve new aesthetic features, including a broader color range and diverse textures, rendering de facto PVD of primary interest for the decorative field and the fashion industry. This review aims to outline the guidelines for decorative industries regarding PVD processes and emphasize the recent advancements, quality control procedures, and limitations.

18.
Phys Chem Chem Phys ; 14(9): 3200-7, 2012 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-22286666

RESUMO

In this paper we report on the characterization by continuous wave electron spin resonance spectroscopy (cw-ESR) of a nitronyl nitroxide radical in a nematic phase. A detailed analysis is performed by exploiting an innovative modeling strategy alternative to the usual spectral simulation approach: most of the molecular parameters needed to calculate the spectrum are evaluated a priori and the ESR spectrum is obtained by direct application of the stochastic Liouville equation. Allowing a limited set of fitting parameters it is possible to reproduce satisfactorily ESR spectra in the temperature range 260 K-340 K including the nematic-to-isotropic phase transition (325.1 K). Our results open the way to a more quantitative understanding of the ordering and mobility of nitronyl nitroxide radicals in nanostructured environments.

19.
Nat Commun ; 13(1): 3838, 2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-35788608

RESUMO

Superconductors and magnetic materials, including molecules, are key ingredients for quantum computing and spintronics. However, only a little is known about how these materials interact in multilayer nanostructures like the hybrid architectures nowadays under development for such advanced applications. Here, we show that a single layer of magnetic molecules, Terbium(III) bis-phthalocyaninato (TbPc2) complexes, deposited under controlled UHV conditions on a superconducting Pb(111) surface is sensitive to the topology of the intermediate state of the superconductor, namely to the presence and evolution of superconducting and normal domains due to screening and penetration of an external magnetic field. The topological hysteresis of the superconducting substrate imprints a local evolution of the magnetisation of the TbPc2 molecules in the monolayer. Element and surface selective detection is achieved by recording the X-ray magnetic circular dichroism of the Tb atoms. This study reveals the impressive potential of magnetic molecules for sensing local magnetic field variations in molecular/superconductor hybrid devices, including spin resonators or spin injecting and spin filtering components for spintronics applications.

20.
Nanomaterials (Basel) ; 12(3)2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35159647

RESUMO

In this study, we report the realization of drug-loaded smart magnetic nanocarriers constituted by superparamagnetic iron oxide nanoparticles encapsulated in a dual pH- and temperature-responsive poly (N-vinylcaprolactam-co-acrylic acid) copolymer to achieve highly controlled drug release and localized magnetic hyperthermia. The magnetic core was constituted by flower-like magnetite nanoparticles with a size of 16.4 nm prepared by the polyol approach, with good saturation magnetization and a high specific absorption rate. The core was encapsulated in poly (N-vinylcaprolactam-co-acrylic acid) obtaining magnetic nanocarriers that revealed reversible hydration/dehydration transition at the acidic condition and/or at temperatures above physiological body temperature, which can be triggered by magnetic hyperthermia. The efficacy of the system was proved by loading doxorubicin with very high encapsulation efficiency (>96.0%) at neutral pH. The double pH- and temperature-responsive nature of the magnetic nanocarriers facilitated a burst, almost complete release of the drug at acidic pH under hyperthermia conditions, while a negligible amount of doxorubicin was released at physiological body temperature at neutral pH, confirming that in addition to pH variation, drug release can be improved by hyperthermia treatment. These results suggest this multi-stimuli-sensitive nanoplatform is a promising candidate for remote-controlled drug release in combination with magnetic hyperthermia for cancer treatment.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa