RESUMO
Climate change poses challenges to agricultural water resources, both in terms of quantity and quality. As an adaptation measure, the new European Regulation (EU) 2020/741 establishes different water quality classes for the use of reclaimed water in agricultural irrigation. Italy is also working on the definition of a new regulation on reclaimed water reuse for agricultural irrigation (in substitution of the current one) that will also include the specific requirements imposed by the European one. Nature-based Solutions (NBS) can be a cost-effective and environmentally friendly way to facilitate water reclamation and reuse. The present study reports the outcomes of a long-term monitoring campaign of two NBS (e.g., a constructed wetland (CW) and a lagoon system (LS)) comparing influent and effluent concentrations of different contaminants (e.g., E. coli, BOD5, TSS, TN and TP) with the threshold values imposed by the new regulations. The results showed that in both the case studies, E. coli (about 100 CFU 100 mL-1) and BOD5 (lower than 25 mg L-1) mean effluent concentration need to be further reduced in reclaimed water to be suitable for unlimited reuse. As a negative aspect, in both the monitored NBS, an increase in TSS mean concentration in the effluent was observed, up to 40 mg L-1 in the case of the LS, making reclaimed water unsuitable for agricultural reuse. The CW has proven to be more effective in nitrogen removal (the effluent mean concentration was 3.4 mg L-1), whereas the LS was better at phosphorus removal (with an effluent mean concentration of 0.4 mg L-1). Based on the results, recommendations were made to further improve the performance of both systems in order to have adequate water quality, even for class A. Furthermore, the capacity of reclaimed water to meet crop water and nutrient needs was analyzed, and total nitrogen removal rate coefficients were calculated for the design of future LSs.
Assuntos
Irrigação Agrícola , Purificação da Água , Irrigação Agrícola/métodos , Áreas Alagadas , Águas Residuárias , Eliminação de Resíduos Líquidos/métodos , Escherichia coliRESUMO
Free water surface (FWS) wetlands can be used to treat agricultural runoff, thereby reducing diffuse pollution. However, as these are highly dynamic systems, their design is still challenging. Complex models tend to require detailed information for calibration, which can only be obtained when the wetland is constructed. Hence simplified models are widely used for FWS wetlands design. The limitations of these models in full-scale FWS wetlands is that these systems often cope with stochastic events with different input concentrations. In our study, we compared different simple transport and degradation models for total nitrogen under steady- and unsteady-state conditions using information collected from a tracer experiment and data from two precipitation events from a full-scale FWS wetland. The tanks-in-series model proved to be robust for simulating solute transport, and the first-order degradation model with non-zero background concentration performed best for total nitrogen concentrations. However, the optimal background concentration changed from event to event. Thus, to use the model as a design tool, it is advisable to include an upper and lower background concentration to determine a range of wetland performance under different events. Models under steady- and unsteady-state conditions with simulated data showed good performance, demonstrating their potential for wetland design.
Assuntos
Purificação da Água , Áreas Alagadas , Desnitrificação , Nitrogênio/metabolismo , ÁguaRESUMO
River systems have undergone a massive transformation since the Anthropocene. The natural properties of river systems have been drastically altered and reshaped, limiting the use of management frameworks, their scientific knowledge base and their ability to provide adequate solutions for current problems and those of the future, such as climate change, biodiversity crisis and increased demands for water resources. To address these challenges, a socioecologically driven research agenda for river systems that complements current approaches is needed and proposed. The implementation of the concepts of social metabolism and the colonisation of natural systems into existing concepts can provide a new basis to analyse the coevolutionary coupling of social systems with ecological and hydrological (i.e., 'socio-ecohydrological') systems within rivers. To operationalize this research agenda, we highlight four initial core topics defined as research clusters (RCs) to address specific system properties in an integrative manner. The colonisation of natural systems by social systems is seen as a significant driver of the transformation processes in river systems. These transformation processes are influenced by connectivity (RC 1), which primarily addresses biophysical aspects and governance (RC 2), which focuses on the changes in social systems. The metabolism (RC 3) and vulnerability (RC 4) of the social and natural systems are significant aspects of the coupling of social systems and ecohydrological systems with investments, energy, resources, services and associated risks and impacts. This socio-ecohydrological research agenda complements other recent approaches, such as 'socio-ecological', 'socio-hydrological' or 'socio-geomorphological' systems, by focusing on the coupling of social systems with natural systems in rivers and thus, by viewing the socioeconomic features of river systems as being just as important as their natural characteristics. The proposed research agenda builds on interdisciplinarity and transdisciplinarity and requires the implementation of such programmes into the education of a new generation of river system scientists, managers and engineers who are aware of the transformation processes and the coupling between systems.