Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 112(32): 9908-13, 2015 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-26216969

RESUMO

Chromatin is pivotal for regulation of the DNA damage process insofar as it influences access to DNA and serves as a DNA repair docking site. Recent works identify histone chaperones as key regulators of damaged chromatin's transcriptional activity. However, understanding how chaperones are modulated during DNA damage response is still challenging. This study reveals that the histone chaperone SET/TAF-Iß interacts with cytochrome c following DNA damage. Specifically, cytochrome c is shown to be translocated into cell nuclei upon induction of DNA damage, but not upon stimulation of the death receptor or stress-induced pathways. Cytochrome c was found to competitively hinder binding of SET/TAF-Iß to core histones, thereby locking its histone-binding domains and inhibiting its nucleosome assembly activity. In addition, we have used NMR spectroscopy, calorimetry, mutagenesis, and molecular docking to provide an insight into the structural features of the formation of the complex between cytochrome c and SET/TAF-Iß. Overall, these findings establish a framework for understanding the molecular basis of cytochrome c-mediated blocking of SET/TAF-Iß, which subsequently may facilitate the development of new drugs to silence the oncogenic effect of SET/TAF-Iß's histone chaperone activity.


Assuntos
Citocromos c/química , Citocromos c/metabolismo , Chaperonas de Histonas/antagonistas & inibidores , Chaperonas de Histonas/química , Histonas/metabolismo , Chaperonas Moleculares/antagonistas & inibidores , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/química , Animais , Ligação Competitiva/efeitos dos fármacos , Camptotecina/farmacologia , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Dano ao DNA , Proteínas de Ligação a DNA , Células HeLa , Chaperonas de Histonas/metabolismo , Humanos , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Ligação Proteica/efeitos dos fármacos , Estrutura Terciária de Proteína , Transporte Proteico/efeitos dos fármacos , Relação Estrutura-Atividade , Fatores de Transcrição/metabolismo , Xenopus
2.
Biochim Biophys Acta ; 1863(8): 2104-14, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27208428

RESUMO

Transforming growth factor-beta (TGF-ß) induces the epithelial to mesenchymal transition (EMT) in breast epithelial cells and plays an important role in mammary morphogenesis and breast cancer. In non-transformed breast epithelial cells TGF-ß antagonizes epidermal growth factor (EGF) action and induces growth inhibition. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has been reported to participate in lumen formation during morphogenesis of human breast epithelial cells. Our previous work indicated that sensitivity of human breast epithelial cells to TRAIL can be modulated through the activation of the epidermal growth factor receptor-1 (EGFR). Here, we show that TGF-ß opposes EGF-mediated sensitization to TRAIL-induced caspase-8 activation and apoptosis in non-transformed breast epithelial cells. Death-inducing signalling complex (DISC) formation by TRAIL was significantly reduced in cells treated with TGF-ß. TGF-ß treatment activates cytoprotective autophagy and down-regulates TRAIL-R2 expression at the cell surface by promoting the intracellular accumulation of this receptor. Lastly, we demonstrate that EMT is not involved in the inhibitory effect of TGF-ß on apoptosis by TRAIL. Together, the data reveal a fine regulation by EGF and TGF-ß of sensitivity of human breast epithelial cells to TRAIL which may be relevant during morphogenesis.


Assuntos
Apoptose/fisiologia , Mama/citologia , Fator de Crescimento Epidérmico/fisiologia , Células Epiteliais/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/fisiologia , Fator de Crescimento Transformador beta1/fisiologia , Antígenos CD , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Autofagia/fisiologia , Caderinas/metabolismo , Células Cultivadas , Proteínas Adaptadoras de Sinalização de Receptores de Domínio de Morte/efeitos dos fármacos , Fator de Crescimento Epidérmico/antagonistas & inibidores , Fator de Crescimento Epidérmico/farmacologia , Células Epiteliais/citologia , Transição Epitelial-Mesenquimal/fisiologia , Feminino , Células HeLa , Humanos , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Proteínas Recombinantes/farmacologia , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Fator de Crescimento Transformador beta1/farmacologia
3.
Cell Death Dis ; 9(2): 134, 2018 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-29374147

RESUMO

Recent evidences indicate that triple-negative breast cancer (TNBC) cells with a mesenchymal phenotype show a basal activation of the unfolded protein response (UPR) that increases their sensitivity to endoplasmic reticulum (ER) stress although the underlying cell death mechanism remains largely unexplored. Here we show that both caspase-8-dependent and -independent apoptotic mechanisms are activated in TNBC cells undergoing sustained ER stress. Activation of the extrinsic apoptotic pathway by ER stress involves ATF4-dependent upregulation of tumor necrosis factor-related apoptosis-inducing ligand receptor 2 (TRAIL-R2/DR5). In addition, accumulation of BH3-only protein Noxa at the mitochondria further contributes to apoptosis following ER stress in TNBC cells. Accordingly, simultaneous abrogation of both extrinsic and intrinsic apoptotic pathways is required to inhibit ER stress-induced apoptosis in these cells. Importantly, persistent FLICE-inhibitory protein (FLIP) expression plays an adaptive role to prevent early activation of the extrinsic pathway of apoptosis upon ER stress. Overall, our data show that ER stress induces cell death through a pleiotropic mechanism in TNBC cells and suggest that targeting FLIP expression may be an effective approach to sensitize these tumor cells to ER stress-inducing agents.


Assuntos
Apoptose , Caspase 8/metabolismo , Estresse do Retículo Endoplasmático , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Apoptose/efeitos dos fármacos , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/metabolismo , Linhagem Celular Tumoral , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Modelos Biológicos , Tapsigargina/farmacologia , Resposta a Proteínas não Dobradas/efeitos dos fármacos , eIF-2 Quinase/metabolismo
4.
Oncotarget ; 8(55): 93688-93703, 2017 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-29212182

RESUMO

Oncogenic transformation triggers reprogramming of cell metabolism, as part of the tumorigenic process. However, metabolic reprogramming may also increase the sensitivity of transformed cells to microenvironmental stress, at the early stages of tumor development. Herein, we show that transformation of human breast epithelial cells by the p95HER2/611CTF oncogene markedly sensitizes these cells to metabolic stress induced by the simultaneous inhibition of glucose and glutamine metabolism. In p95HER2/611CTF-transformed cells, metabolic stress activates a TNF related apoptosis-inducing ligand (TRAIL)-R and caspase-8-dependent apoptotic process that requires prior down-regulation of cellular FLICE-like inhibitor protein (c-FLIP) levels. Importantly, sustained mTOR activation is involved in FLIP down-regulation and apoptosis induced by metabolic stress. In vivo experiments in immunodeficient mice demonstrate a requirement for caspase-8 in restraining primary tumor growth of xenografts with p95HER2/611CTF-transformed cells. Collectively, these data define a critical role of the extrinsic pathway of apoptosis in the control of tumor initiation by microenvironmental cues.

5.
Curr Pharm Des ; 20(17): 2819-33, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-23944369

RESUMO

Activation of cell surface death receptors of the tumor necrosis factor (TNF) receptor superfamily by the appropriate ligands represents an attractive therapeutic strategy to induce cell death by apoptosis in cancer cells. However, the toxic effects of TNF-alpha and CD95/Fas ligand (FasL) in normal tissues have significantly hampered the clinical application of these ligands in cancer treatment. TNF-related apoptosis-inducing ligand (TRAIL/APO-2L), another member of the TNF family, has been shown to induce apoptosis selectively in many tumor cell lines. Interestingly, TRAIL treatment also results in significant growth suppression of TRAIL-sensitive human cancer xenografts in mice and nonhuman primates. At the same time, recombinant TRAIL and agonistic TRAIL receptor antibodies show no significant cytotoxicity in these studies. Despite some adverse effects of certain TRAIL preparations, activation of proapoptotic TRAIL receptors represents a promising approach in cancer therapy. Herein we review what is known about proapoptotic TRAIL signaling, the role of intracellular survival pathways in the regulation of resistance to TRAIL and the activation of non-apoptotic signaling by TRAIL. We also discuss the role of the TRAIL system in tumorigenesis and the results of clinical trials with recombinant TRAIL and various TRAIL receptor agonistic antibodies, either as monotherapy or in combination with targeted or conventional chemotherapy.


Assuntos
Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Animais , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/metabolismo , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/metabolismo , Transformação Celular Neoplásica/metabolismo , Humanos , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/agonistas , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos
6.
Cancer Res ; 74(6): 1766-77, 2014 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-24453000

RESUMO

HER2/Neu/ERBB2 is a receptor tyrosine kinase overexpressed in approximately 20% of human breast tumors. Truncated or mutant isoforms that show increased oncogenicity compared with the wild-type receptor are found in many breast tumors. Here, we report that constitutively active ERBB2 sensitizes human breast epithelial cells to agents that induce endoplasmic reticulum stress, altering the unfolded protein response (UPR) of these cells. Deregulation of the ERK, AKT, and mTOR activities elicited by mutant ERBB2 was involved in mediating this differential UPR response, elevating the response to endoplasmic reticulum stress, and apoptotic cell death. Mechanistic investigations revealed that the increased sensitivity of mutant ERBB2-expressing cells to endoplasmic reticulum stress relied upon a UPR effector signaling involving the PERK-ATF4-CHOP pathway, upregulation of the proapoptotic cell surface receptor TRAIL-R2, and activation of proapoptotic caspase-8. Collectively, our results offer a rationale for the therapeutic exploration of treatments inducing endoplasmic reticulum stress against mutant ERBB2-expressing breast tumor cells.


Assuntos
Apoptose , Estresse do Retículo Endoplasmático , Sistema de Sinalização das MAP Quinases , Receptor ErbB-2/metabolismo , Fator 4 Ativador da Transcrição/metabolismo , Linhagem Celular Tumoral , Humanos , Receptor Cross-Talk , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Tapsigargina/farmacologia , Fator de Transcrição CHOP/metabolismo , Resposta a Proteínas não Dobradas
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa