Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
J Physiol ; 602(11): 2627-2648, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38781025

RESUMO

Homeostasis constitutes a key concept in physiology and refers to self-regulating processes that maintain internal stability when adjusting to changing external conditions. It diminishes internal entropy constituting a driving force behind evolution. Natural selection might act on homeostatic regulatory mechanisms and control mechanisms including homeodynamics, allostasis, hormesis and homeorhesis, where different stable stationary states are reached. Regeneration is under homeostatic control through hormesis. Damage to tissues initiates a response to restore the impaired equilibrium caused by mild stress using cell proliferation, cell differentiation and cell death to recover structure and function. Repair is a homeorhetic change leading to a new stable stationary state with decreased functionality and fibrotic scarring without reconstruction of the 3-D pattern. Mechanisms determining entrance of the tissue or organ to regeneration or repair include the balance between innate and adaptive immune cells in relation to cell plasticity and stromal stem cell responses, and redox balance. The regenerative and reparative capacities vary in different species, distinct tissues and organs, and at different stages of development including ageing. Many cell signals and pathways play crucial roles determining regeneration or repair by regulating protein synthesis, cellular growth, inflammation, proliferation, autophagy, lysosomal function, metabolism and metalloproteinase cell signalling. Attempts to favour the entrance of damaged tissues to regeneration in those with low proliferative rates have been made; however, there are evolutionary constraint mechanisms leading to poor proliferation of stem cells in unfavourable environments or tumour development. More research is required to better understand the regulatory processes of these mechanisms.


Assuntos
Evolução Biológica , Homeostase , Regeneração , Homeostase/fisiologia , Animais , Humanos , Regeneração/fisiologia
2.
Int J Mol Sci ; 25(11)2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38892464

RESUMO

In this study, we investigated whether severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) spike protein may modify angiotensin-converting enzyme 2 (ACE2) activity in the plasma, heart, kidney, liver, lung, and six brain regions (amygdala, brain stem, cortex, hippocampus, hypothalamus, and striatum) of diabetic and hypertensive rats. We determine ACE2 activity in the plasma and lysates of heart, kidney, liver, lung, and six brain regions. MLN-4760 inhibits ACE2 activity in the plasma and all organs. On the other hand, soluble ACE2 (sACE2) activity increased in the plasma of diabetic rats, and there was no change in the plasma of hypertensive rats. ACE2 activity was augmented in the liver, brain stem, and striatum, while it decreased in the kidney, amygdala, cortex, and hippocampus of diabetic rats. ACE2 activity increased in the kidney, liver, and lung, while it decreased in the heart, amygdala, cortex, and hypothalamus of hypertensive rats. We measured the ACE2 content via enzyme-linked immunosorbent assay and found that ACE2 protein levels increased in the heart, while it decreased in the plasma, kidney, brain stem, cortex, hippocampus, hypothalamus, and striatum of diabetic rats. ACE2 protein levels decreased in the brain stem, cortex, hippocampus, and hypothalamus of hypertensive rats. Our data showed that the spike protein enhanced ACE2 activity in the liver and lungs of diabetic rats, as well as in the heart and three of the brain regions (cortex, hypothalamus, and striatum) of hypertensive rats.


Assuntos
Enzima de Conversão de Angiotensina 2 , Hipertensão , Glicoproteína da Espícula de Coronavírus , Animais , Enzima de Conversão de Angiotensina 2/metabolismo , Ratos , Glicoproteína da Espícula de Coronavírus/metabolismo , Masculino , Hipertensão/metabolismo , SARS-CoV-2 , Diabetes Mellitus Experimental/metabolismo , Encéfalo/metabolismo , Encéfalo/enzimologia , COVID-19/metabolismo , COVID-19/virologia , Carboxipeptidases/metabolismo , Rim/metabolismo , Rim/enzimologia , Humanos , Imidazóis , Leucina/análogos & derivados
3.
Int J Mol Sci ; 25(11)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38892068

RESUMO

Food-grade titanium dioxide (E171) and zinc oxide nanoparticles (ZnO NPs) are common food additives for human consumption. We examined multi-organ toxicity of both compounds on Wistar rats orally exposed for 90 days. Rats were divided into three groups: (1) control (saline solution), (2) E171-exposed, and (3) ZnO NPs-exposed. Histological examination was performed with hematoxylin-eosin (HE) staining and transmission electron microscopy (TEM). Ceramide (Cer), 3-nitrotyrosine (NT), and lysosome-associated membrane protein 2 (LAMP-2) were detected by immunofluorescence. Relevant histological changes were observed: disorganization, inflammatory cell infiltration, and mitochondrial damage. Increased levels of Cer, NT, and LAMP-2 were observed in the liver, kidney, and brain of E171- and ZnO NPs-exposed rats, and in rat hearts exposed to ZnO NPs. E171 up-regulated Cer and NT levels in the aorta and heart, while ZnO NPs up-regulated them in the aorta. Both NPs increased LAMP-2 expression in the intestine. In conclusion, chronic oral exposure to metallic NPs causes multi-organ injury, reflecting how these food additives pose a threat to human health. Our results suggest how complex interplay between ROS, Cer, LAMP-2, and NT may modulate organ function during NP damage.


Assuntos
Ceramidas , Nanopartículas Metálicas , Ratos Wistar , Titânio , Óxido de Zinco , Animais , Óxido de Zinco/toxicidade , Titânio/toxicidade , Titânio/efeitos adversos , Ratos , Ceramidas/metabolismo , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Masculino , Administração Oral , Proteína 2 de Membrana Associada ao Lisossomo/metabolismo , Tirosina/análogos & derivados , Tirosina/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/patologia
4.
Part Fibre Toxicol ; 20(1): 43, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37978398

RESUMO

BACKGROUND: Metallic nanoparticles (NPs) are widely used as food additives for human consumption. NPs reach the bloodstream given their small size, getting in contact with all body organs and cells. NPs have adverse effects on the respiratory and intestinal tract; however, few studies have focused on the toxic consequences of orally ingested metallic NPs on the cardiovascular system. Here, the effects of two food-grade additives on the cardiovascular system were analyzed. METHODS: Titanium dioxide labeled as E171 and zinc oxide (ZnO) NPs were orally administered to Wistar rats using an esophageal cannula at 10 mg/kg bw every other day for 90 days. We evaluated cardiac cell morphology and death, expression of apoptotic and autophagic proteins in cardiac mitochondria, mitochondrial dysfunction, and concentration of metals on cardiac tissue. RESULTS: Heart histology showed important morphological changes such as presence of cellular infiltrates, collagen deposition and mitochondrial alterations in hearts from rats exposed to E171 and ZnO NPs. Intracellular Cyt-C levels dropped, while TUNEL positive cells increased. No significant changes in the expression of inflammatory cytokines were detected. Both NPs altered mitochondrial function indicating cardiac dysfunction, which was associated with an elevated concentration of calcium. ZnO NPs induced expression of caspases 3 and 9 and two autophagic proteins, LC3B and beclin-1, and had the strongest effect compared to E171. CONCLUSIONS: E171 and ZnO NPs induce adverse cardiovascular effects in rats after 90 days of exposure, thus food intake containing these additives, should be taken into consideration, since they translocate into the bloodstream and cause cardiovascular damage.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Óxido de Zinco , Ratos , Humanos , Animais , Óxido de Zinco/toxicidade , Ratos Wistar , Nanopartículas/toxicidade , Coração , Nanopartículas Metálicas/toxicidade , Titânio/toxicidade , Aditivos Alimentares/toxicidade
5.
Int J Mol Sci ; 24(23)2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-38068956

RESUMO

The objective of this study was to investigate whether the activity of enzymes involved in sphingolipid catabolism could be biomarkers to predict early renal damage in streptozotocin (STZ)-induced diabetic rats and Angiotensin II (Ang II)-induced hypertension rats. Diabetic and hypertensive rats had no changes in plasma creatinine concentration. However, transmission electron microscopy (TEM) analysis showed slight ultrastructural changes in the glomeruli and tubular epithelial cells from diabetic and hypertensive rats. Our results show that the acid sphingomyelinase (aSMase) and neutral sphingomyelinase (nSMase) activity increased in the urine of diabetic rats and decreased in hypertensive rats. Only neutral ceramidase (nCDase) activity increased in the urine of diabetic rats. Furthermore, the immunofluorescence demonstrated positive staining for the nSMase, nCDase, and sphingosine kinase (SphK1) in glomerular mesangial cells, proximal tubule, ascending thin limb of the loop of Henle, thick ascending limb of Henle's loop, and principal cells of the collecting duct in the kidney. In conclusion, our results suggest that aSMase and nCDase activity in urine could be a novel predictor of early slight ultrastructural changes in the nephron, aSMase and nCDase as glomerular injury biomarkers, and nSMase as a tubular injury biomarker in diabetic and hypertensive rats.


Assuntos
Diabetes Mellitus Experimental , Hipertensão , Ratos , Animais , Esfingomielina Fosfodiesterase/metabolismo , Diabetes Mellitus Experimental/metabolismo , Rim/metabolismo , Néfrons/metabolismo , Esfingolipídeos
6.
Int J Mol Sci ; 24(5)2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36901968

RESUMO

Frailty is a global health problem that impacts clinical practice. It is complex, having a physical and a cognitive component, and it is the result of many contributing factors. Frail patients have oxidative stress and elevated proinflammatory cytokines. Frailty impairs many systems and results in a reduced physiological reserve and increased vulnerability to stress. It is related to aging and to cardiovascular diseases (CVD). There are few studies on the genetic factors of frailty, but epigenetic clocks determine age and frailty. In contrast, there is genetic overlap of frailty with cardiovascular disease and its risk factors. Frailty is not yet considered a risk factor for CVD. It is accompanied by a loss and/or poor functioning of muscle mass, which depends on fiber protein content, resulting from the balance between protein breakdown and synthesis. Bone fragility is also implied, and there is a crosstalk between adipocytes, myocytes, and bone. The identification and assessment of frailty is difficult, without there being a standard instrument to identify or treat it. Measures to prevent its progression include exercises, as well as supplementing the diet with vitamin D and K, calcium, and testosterone. In conclusion, more research is needed to better understand frailty and to avoid complications in CVD.


Assuntos
Doenças Cardiovasculares , Fragilidade , Humanos , Idoso , Fragilidade/complicações , Doenças Cardiovasculares/complicações , Idoso Fragilizado , Músculo Esquelético , Tecido Adiposo
7.
Int J Mol Sci ; 24(6)2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36982395

RESUMO

Metabolic syndrome (MetS) is a cluster of factors that increase the risk of developing diabetes, stroke, and heart failure. The pathophysiology of injury by ischemia/reperfusion (I/R) is highly complex and the inflammatory condition plays an important role by increasing matrix remodeling and cardiac apoptosis. Natriuretic peptides (NPs) are cardiac hormones with numerous beneficial effects mainly mediated by a cell surface receptor named atrial natriuretic peptide receptor (ANPr). Although NPs are powerful clinical markers of cardiac failure, their role in I/R is still controversial. Peroxisome proliferator-activated receptor α agonists exert cardiovascular therapeutic actions; however, their effect on the NPs' signaling pathway has not been extensively studied. Our study provides important insight into the regulation of both ANP and ANPr in the hearts of MetS rats and their association with the inflammatory conditions caused by damage from I/R. Moreover, we show that pre-treatment with clofibrate was able to decrease the inflammatory response that, in turn, decreases myocardial fibrosis, the expression of metalloprotease 2 and apoptosis. Treatment with clofibrate is also associated with a decrease in ANP and ANPr expression.


Assuntos
Síndrome Metabólica , Traumatismo por Reperfusão , Ratos , Animais , Fator Natriurético Atrial/metabolismo , PPAR alfa/agonistas , Clofibrato/farmacologia , Síndrome Metabólica/complicações , Síndrome Metabólica/tratamento farmacológico , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Receptores do Fator Natriurético Atrial/metabolismo , Peptídeos Natriuréticos , Isquemia , Arritmias Cardíacas , Inflamação/tratamento farmacológico
8.
Inflammopharmacology ; 31(6): 3217-3226, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37728726

RESUMO

Natural products are recognized as potential analgesics since many of them are part of modern medicine to relieve pain without serious adverse effects. The aim of this study was to investigate the antinociceptive and anti-inflammatory activities of an aqueous extract of Brassica oleracea var. italica sprouts (AEBS) and one of its main reported bioactive metabolites sulforaphane (SFN). Antinociceptive activity of the AEBS (30, 100, and 300 mg/kg, i.p. or 1000 and 2000 mg/kg, p.o.) and SFN (0.1 mg/kg, i.p.) was evaluated in the plantar test in rats to reinforce its analgesic-like activity at central level using the reference drug tramadol (TR, 50 mg/kg, i.p.). The anti-inflammatory-like response was determined in the carrageenan-induced oedema at the same dosages for comparison with ketorolac (KET, 20 mg/kg, i.p.) or indomethacin (INDO, 20 mg/kg, p.o.). A histological analysis of the swollen paw was included to complement the anti-inflammatory response. Additionally, acute toxicity observed in clinical analgesics as the most common adverse effects, such as sedation and/or gastric damage, was also explored. As a result, central and peripheral action of the AEBS was confirmed using enteral and parenteral administration, in which significant reduction of the nociceptive and inflammatory responses resembled the effects of TR, KET, or INDO, respectively, involving the presence of SFN. No adverse or toxic effects were observed in the presence of the AEBS or SFN. In conclusion, this study supports that Brassica oleracea var. italica sprouts are a potential source of antinociceptive natural products such as SFN for therapy of pain alone and associated to an inflammation condition.


Assuntos
Analgésicos , Brassica , Ratos , Animais , Dor/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Extratos Vegetais
9.
Int J Mol Sci ; 23(21)2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36361726

RESUMO

Zinc oxide nanoparticles (ZnO NPs) are widely used in the cosmetic industry. They are nano-optical and nano-electrical devices, and their antimicrobial properties are applied in food packaging and medicine. ZnO NPs penetrate the body through inhalation, oral, and dermal exposure and spread through circulation to various systems and organs. Since the cardiovascular system is one of the most vulnerable systems, in this work, we studied ZnO NPs toxicity in H9c2 rat cardiomyoblasts. Cardiac cells were exposed to different concentrations of ZnO NPs, and then the morphology, proliferation, viability, mitochondrial membrane potential (ΔΨm), redox state, and protein expression were measured. Transmission electron microscopy (TEM) and hematoxylin-eosin (HE) staining showed strong morphological damage. ZnO NPs were not observed inside cells, suggesting that Zn2+ ions were internalized, causing the damage. ZnO NPs strongly inhibited cell proliferation and MTT reduction at 10 and 20 µg/cm2 after 72 h of treatment. ZnO NPs at 20 µg/cm2 elevated DCF fluorescence, indicating alterations in the cellular redox state associated with changes in ΔΨm and cell death. ZnO NPs also reduced the intracellular expression of troponin I and atrial natriuretic peptide. ZnO NPs are toxic for cardiac cells; therefore, consumption of products containing them could cause heart damage and the development of cardiovascular diseases.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Óxido de Zinco , Ratos , Animais , Óxido de Zinco/química , Nanopartículas/toxicidade , Nanopartículas/química , Microscopia Eletrônica de Transmissão , Oxirredução , Íons , Nanopartículas Metálicas/toxicidade , Nanopartículas Metálicas/química
10.
Int J Mol Sci ; 22(16)2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34445644

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is considered a manifestation of metabolic syndrome (MS) and is characterized by the accumulation of triglycerides and a varying degree of hepatic injury, inflammation, and repair. Moreover, peroxisome-proliferator-activated receptors (PPARs) play a critical role in the pathophysiological processes in the liver. There is extensive evidence of the beneficial effect of polyphenols such as resveratrol (RSV) and quercetin (QRC) on the treatment of liver pathology; however, the mechanisms underlying their beneficial effects have not been fully elucidated. In this work, we show that the mechanisms underlying the beneficial effects of RSV and QRC against inflammation in liver damage in our MS model are due to the activation of novel pathways which have not been previously described such as the downregulation of the expression of toll-like receptor 4 (TLR4), neutrophil elastase (NE) and purinergic receptor P2Y2. This downregulation leads to a decrease in apoptosis and hepatic fibrosis with no changes in hepatocyte proliferation. In addition, PPAR alpha and gamma expression were altered in MS but their expression was not affected by the treatment with the natural compounds. The improvement of liver damage by the administration of polyphenols was reflected in the normalization of serum transaminase activities.


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Inflamação/tratamento farmacológico , Cirrose Hepática/prevenção & controle , Síndrome Metabólica/complicações , Quercetina/farmacologia , Receptores Purinérgicos/metabolismo , Resveratrol/farmacologia , Animais , Antioxidantes/farmacologia , Citocinas/metabolismo , Inflamação/etiologia , Inflamação/metabolismo , Inflamação/patologia , Cirrose Hepática/etiologia , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Masculino , Ratos , Ratos Wistar , Receptores Purinérgicos/genética
11.
Int J Mol Sci ; 21(11)2020 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-32516946

RESUMO

Purinergic receptors play a central role in the renal pathophysiology of angiotensin II-induced hypertension, since elevated ATP chronically activates P2X7 receptors in this model. The changes induced by the P2X antagonist Brilliant blue G (BBG) in glomerular hemodynamics and in tubulointerstitial inflammation resulting from angiotensin II infusion were studied. Rats received angiotensin II (435 ng·kg-1·min-1, 2 weeks) alone or in combination with BBG (50 mg/kg/day intraperitoneally). BBG did not modify hypertension (214.5 ± 1.4 vs. 212.7 ± 0.5 mmHg), but restored to near normal values afferent (7.03 ± 1.00 to 2.97 ± 0.27 dyn.s.cm-5) and efferent (2.62 ± 0.03 to 1.29 ± 0.09 dyn.s.cm-5) arteriolar resistances, glomerular plasma flow (79.23 ± 3.15 to 134.30 ± 1.11 nl/min), ultrafiltration coefficient (0.020 ± 0.002 to 0.036 ± 0.003 nl/min/mmHg) and single nephron glomerular filtration rate (22.28 ± 2.04 to 34.46 ± 1.54 nl/min). Angiotensin II induced overexpression of P2X7 receptors in renal tubular cells and in infiltrating T and B lymphocytes and macrophages. All inflammatory cells were increased by angiotensin II infusion and reduced by 20% to 50% (p < 0.05) by BBG administration. Increased IL-2, IL-6, TNFα, IL-1ß, IL-18 and overexpression of NLRP3 inflammasome were induced by angiotensin II and suppressed by BBG. These studies suggest that P2X7 receptor-mediated renal vasoconstriction, tubulointerstitial inflammation and activation of NLRP3 inflammasome are associated with angiotensin II-induced hypertension.


Assuntos
Angiotensina II/efeitos adversos , Suscetibilidade a Doenças , Hipertensão/etiologia , Hipertensão/metabolismo , Nefrite/complicações , Nefrite/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Animais , Pressão Arterial , Biópsia , Citocinas/metabolismo , Gerenciamento Clínico , Hipertensão/diagnóstico , Imunidade , Proteinúria/metabolismo , Punções , Ratos , Receptores Purinérgicos P2X7/genética
12.
Molecules ; 24(7)2019 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-30987086

RESUMO

Mixtures of resveratrol (RSV) + quercetin (QRC) have antioxidant properties that probably impact on fatty liver in metabolic syndrome (MS) individuals. Here, we study the effects of a mixture of RSV + QRC on oxidative stress (OS) and fatty liver in a rat model of MS. Weanling male Wistar rats were separated into four groups (n = 8): MS rats with 30% sucrose in drinking water plus RSV + QRC (50 and 0.95 mg/kg/day, respectively), MS rats without treatment, control rats (C), and C rats plus RSV + QRC. MS rats had increased systolic blood pressure, triglycerides, insulin levels, insulin resistance index homeostasis model (HOMA), adiponectin, and leptin. The RSV + QRC mixture compensated these variables to C values (p < 0.01) in MS rats. Lipid peroxidation and carbonylation were increased in MS. Total antioxidant capacity and glutathione (GSH) were decreased in MS and compensated in MS plus RVS + QRC rats. Catalase, superoxide dismutase isoforms, peroxidases, glutathione-S-transferase, glutathione reductase, and the expression of Nrf2 were decreased in MS and reversed in MS plus RVS + QRC rats (p < 0.01). In conclusion, the mixture of RSV + QRC has benefic effects on OS in fatty liver in the MS rats through the improvement of the antioxidant capacity and by the over-expression of the master factor Nrf2, which increases the antioxidant enzymes and GSH recycling.


Assuntos
Antioxidantes/metabolismo , Fígado Gorduroso/etiologia , Fígado Gorduroso/metabolismo , Síndrome Metabólica/complicações , Síndrome Metabólica/metabolismo , Quercetina/administração & dosagem , Resveratrol/administração & dosagem , Animais , Biomarcadores , Modelos Animais de Doenças , Fígado Gorduroso/sangue , Fígado Gorduroso/prevenção & controle , Glutationa/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Masculino , Síndrome Metabólica/sangue , Estresse Oxidativo/efeitos dos fármacos , Ratos
13.
Am J Physiol Renal Physiol ; 313(1): F9-F19, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28404593

RESUMO

Deleterious effects of purinergic P2X1 and P2X7 receptors (P2XRs) in ANG II-dependent hypertension include increased renal vascular resistance, and impaired autoregulation and pressure natriuresis. However, their specific effects on the determinants of glomerular hemodynamics remain incompletely delineated. To investigate the P2XR contributions to altered glomerular hemodynamics in hypertension, the effects of acute blockade of P2X1R, P2X7R, and P2X4R with NF449, A438079, and PSB12054, respectively, were evaluated in ANG II-infused rats (435 ng·kg-1·min-1). P2X1R or P2X7R blockade reduced afferent (6.85 ± 1.05 vs. 2.37 ± 0.20 dyn·s-1·cm-5) and efferent (2.85 ± 0.38 vs. 0.99 ± 0.07 dyn·s-1·cm-5) arteriolar resistances, leading to increases in glomerular plasma flow (75.82 ± 5.58 vs. 206.7 ± 16.38 nl/min), ultrafiltration coefficient (0.0198 ± 0.0024 vs. 0.0512 ± 0.0046 nl·min-1·mmHg-1), and single-nephron glomerular filtration rate (22.73 ± 2.02 vs. 51.56 ± 3.87 nl/min) to near normal values. Blockade of P2X4R did not elicit effects in hypertensive rats. In normotensive sham-operated rats, only the P2X1R antagonist caused an increase plasma flow and single-nephron glomerular filtration rate, whereas the P2X4R antagonist induced glomerular vasoconstriction that was consistent with evidence that P2X4R stimulation increases release of nitric oxide from endothelial cells. Mean arterial pressure remained unchanged in both hypertensive and normotensive groups. Western blot analysis showed overexpression of P2X1R, P2X7R, and P2X4R proteins in hypertensive rats. Whereas it has been generally assumed that the altered glomerular vascular resistances in ANG II hypertension are due to AT1 receptor-mediated vasoconstriction, these data indicate a predominant P2X1R and P2X7R control of glomerular hemodynamics in ANG II hypertension.


Assuntos
Angiotensina II , Hemodinâmica , Hipertensão/metabolismo , Glomérulos Renais/irrigação sanguínea , Glomérulos Renais/metabolismo , Receptores Purinérgicos P2X1/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Circulação Renal , Animais , Pressão Arterial , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Hemodinâmica/efeitos dos fármacos , Hipertensão/induzido quimicamente , Hipertensão/fisiopatologia , Glomérulos Renais/efeitos dos fármacos , Masculino , Óxido Nítrico/metabolismo , Proteinúria/induzido quimicamente , Proteinúria/metabolismo , Proteinúria/fisiopatologia , Antagonistas do Receptor Purinérgico P2X/farmacologia , Ratos Wistar , Receptores Purinérgicos P2X1/efeitos dos fármacos , Receptores Purinérgicos P2X4/efeitos dos fármacos , Receptores Purinérgicos P2X4/metabolismo , Receptores Purinérgicos P2X7/efeitos dos fármacos , Circulação Renal/efeitos dos fármacos , Fluxo Plasmático Renal , Transdução de Sinais , Vasoconstrição
14.
Am J Physiol Renal Physiol ; 308(10): F1178-87, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25354938

RESUMO

The possibility that angiotensin II (ANG II) exerts its effects through the activation of neutral sphingomyelinase (nSMase) has not been tested in kidneys. The results of the present study provide evidence for the activity and expression of nSMase in rat kidneys. In isolated perfused rat kidney, ANG II-induced renal vasoconstriction was inhibited by GW4869, an inhibitor of nSMase. We used nSMase for investigating the signal transduction downstream of ceramide. nSMase constricted the renal vasculature. An inhibitor of ceramidase (CDase), N-oleoylethanolamine (OEA), enhanced either ANG II- or nSMase-induced renal vasoconstriction. To demonstrate the interaction between the nSMase and cytosolic phospholipase A2 (cPLA2) signal transduction pathways, we evaluated the response to nSMase in the presence and absence of inhibitors of arachidonic acid (AA) metabolism: arachidonyl trifluoromethyl ketone (AACOCF3), an inhibitor of cPLA2; 5,8,11,14-eicosatetraynoic acid (ETYA), an inhibitor of all AA pathways; indomethacin, an inhibitor of cyclooxygenase (COX); furegrelate, a thromboxane A2 (TxA2)-synthase inhibitor; and SQ29548, a TxA2-receptor antagonist. In these experiments, the nSMase-induced renal vasoconstriction decreased. ANG II or nSMase was associated with an increase in the release of thromboxane B2 (TxB2) in the renal perfusate of isolated perfused rat kidney. In addition, the coexpression of the ceramide with cPLA2, was found in the smooth muscle layer of intrarenal vessels. Our results suggest that ANG II stimulates ceramide formation via the activation of nSMase; thus ceramide may indirectly regulate vasoactive processes that modulate the activity of cPLA2 and the release of TxA2.


Assuntos
Angiotensina II/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Rim/fisiologia , Transdução de Sinais/fisiologia , Angiotensina II/farmacologia , Compostos de Anilina/farmacologia , Animais , Compostos de Benzilideno/farmacologia , Ceramidas/fisiologia , Técnicas In Vitro , Peptídeos e Proteínas de Sinalização Intracelular/farmacologia , Rim/irrigação sanguínea , Rim/efeitos dos fármacos , Masculino , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/fisiologia , Fosfolipases A2/fisiologia , Ratos , Ratos Wistar , Tromboxano B2/fisiologia , Vasoconstrição/efeitos dos fármacos
15.
Metabolites ; 14(10)2024 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-39452936

RESUMO

BACKGROUND: Neonatal rats that receive sucrose during a critical postnatal period (CP, days 12 to 28) develop hypertension by the time they reach adulthood. Inflammation might contribute to changes during this period and could be associated with variations in the vascular smooth muscle (VSMC) phenotype. OBJECTIVE: We studied changes in inflammatory pathways that could underlie the expression of the secretory phenotype in the VSMC in the thoracic aorta of rats that received sucrose during CP. METHODS: We analyzed histological changes in the aorta and the expression of the COX-2, TLR4, iNOS, eNOS, MMP-2 and -9, and ß- and α-actin, the quantities of TNF-α, IL-6, and IL-1ß using ELISA, and the levels of fatty acids using gas chromatography. RESULTS: The aortic wall presented disorganization, decellularization, and wavy elastic fibers and an increase in the lumen area. The α- and ß-actin expressions were decreased, while COX-2, TLR4, TNF-α, and the activity of IL-6 were increased. Oleic acid was increased in CP in comparison to the control group. CONCLUSIONS: There is transient hypertension at the end of the CP that is accompanied by inflammation and a change in the phenotype of VSMC to the secretory phenotype. The inflammatory changes could act as epigenetic signals to determine the development of hypertension when animals reach adulthood.

16.
Front Aging Neurosci ; 15: 1162747, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37139092

RESUMO

Being overweight and obesity are world health problems, with a higher prevalence in women, defined as abnormal or excessive fat accumulation that increases the risk of chronic diseases. Excess energy leads to adipose expansion, generating hypertrophic adipocytes that produce various pro-inflammatory molecules. These molecules cause chronic low-intensity inflammation, affecting the organism's functioning and the central nervous system (CNS), inducing neuroinflammation. The neuroinflammatory response during obesity occurs in different structures of the CNS involved in memory and learning, such as the cortex and the hippocampus. Here we analyzed how obesity-related peripheral inflammation can affect CNS physiology, generating neuroinflammation and promoting cellular senescence establishment. Since some studies have shown an increase in senescent cells during aging, obesity, and neurodegenerative diseases, we proposed that cellular senescence participation may contribute to the cognitive decline in an obesity model of middle-aged female Wistar rats. The inflammatory state of 6 and 13 months-old female Wistar rats fed with a hypercaloric diet was measured in serum and CNS (cortex and hippocampus). Memory was evaluated using the novel object recognition (NOR) test; the presence of senescent markers was also determined. Our data suggest that the systemic inflammation generated by obesity induces a neuroinflammatory state in regions involved in learning and memory, with an increase in senescent markers, thus proposing senescence as a potential participant in the negative consequences of obesity in cognition.

17.
Antioxidants (Basel) ; 12(11)2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38001866

RESUMO

Spinach methanolic extract (SME) has a hepatoprotective effect due to its polyphenolic antioxidants; however, its action in parenchymal (PQ) and non-parenchymal (nPQ) cells remains unknown. This study investigates the hepatoprotective effect of SME on streptozotocin-induced hyperglycemic rats (STZ), focusing on immunohistochemical analyses. Methods: The extract was prepared, and the total polyphenols and antioxidant activity were quantified. Adult male Wistar rats were divided into four groups (n = 8): normoglycemic rats (NG), STZ-induced hyperglycemic (STZ), STZ treated with 400 mg/kg SME (STZ-SME), and NG treated with SME (SME) for 12 weeks. Serum liver transaminases and lipid peroxidation levels in tissue were determined. The distribution pattern and relative levels of markers related to oxidative stress [reactive oxygen species (ROS), superoxide dismutase-1, catalase, and glutathione peroxidase-1], of cytoprotective molecules [nuclear NRF2 and heme oxygenase-1 (HO-1)], of inflammatory mediators [nuclear NF-κB, TNF-α], proliferation (PCNA), and of fibrogenesis markers [TGF-ß, Smad2/3, MMP-9, and TIMP1] were evaluated. Results: SME had antioxidant capacity, and it lowered serum transaminase levels in STZ-SME compared to STZ. It reduced NOX4 staining, and lipid peroxidation levels were related to low formation of ROS. In STZ-SME, the immunostaining for antioxidant enzymes increased in nPQ cells compared to STZ. However, enzymes were also localized in extra and intracellular vesicles in STZ. Nuclear NRF2 staining and HO-1 expression in PQ and nPQ were higher in STZ-SME than in STZ. Inflammatory factors were decreased in STZ-SME and were related to the percentage decrease in NF-κB nuclear staining in nPQ cells. Similarly, TGF-ß (in the sinusoids) and MMP-9 (in nPQ) were increased in the STZ-SME group compared to the other groups; however, staining for CTGF, TIMP1, and Smad2/3 was lower. Conclusions: SME treatment in hyperglycemic rats induced by STZ may have hepatoprotective properties due to its scavenger capacity and the regulation of differential expression of antioxidant enzymes between the PQ and nPQ cells, reducing inflammatory and fibrogenic biomarkers in liver tissue.

18.
Arch Cardiol Mex ; 92(3): 390-398, 2022 07 01.
Artigo em Espanhol | MEDLINE | ID: mdl-35537714

RESUMO

Evolutionary medicine studies the role of evolution in health problems. Diseases are considered as phenotypes generated by the expression of sets of genes and a complex interplay with the environment. The main mechanisms involved in evolutionary medicine are antagonistic pleiotropy, ecological antagonistic pleiotropy, atavisms and heterochrony. Antagonistic pleiotropism refers to genes that are beneficial during certain stages of development but become detrimental in others. Ecological antagonistic pleiotropy refers to the misadaptation to current lifestyle conditions which are different from those in which humans evolved. These mechanisms participate in the development of congestive heart failure, hypertension and atherosclerosis. Atavistic conditions or genes are expressed in our ancestors but have remained silent during evolution being suddenly expressed without an apparent cause during the appearance of a disease is another mechanism in evolutionary cardiology. The change in the heart metabolism from fatty acid to glucose dependent can be considered as an atavistic condition that appears in the heart after a stroke and may underlie impaired cardiomyocyte regeneration. Heterochrony is the expression of genes that cause the appearance of traits at a different timing during development and is therefore related to atavisms. Evolutionary medicine explains the interactions of pathogens and the host in infectious diseases where the cardiac tissue becomes a target. Mechanisms involved in evolutionary medicine participate in the generation of diseases and may be approached experimentally. Therefore, to better understand health problems and therapeutical approaches, an evolutionary medicine approach in experimental medicine may prove useful.


La medicina evolutiva estudia el papel de la evolución en los problemas de salud. Las enfermedades son fenotipos generados por la expresión de genes y una interacción compleja con el medio ambiente. Los principales mecanismos implicados son la pleiotropía antagonista, la pleiotropía antagonista ecológica, los atavismos y la heterocronía. El pleiotropismo antagonista se refiere a situaciones donde los genes que son beneficiosos durante ciertas etapas del desarrollo resultan perjudiciales en otras. La pleiotropía antagonista ecológica se refiere a la mala adaptación a las condiciones de vida actuales, que difieren de aquellas en las que los humanos evolucionaron. Estos mecanismos participan en el desarrollo de insuficiencia cardiaca congestiva, hipertensión y aterosclerosis. Las condiciones o genes atávicos fueron características que se expresaron en nuestros antepasados pero han permanecido silenciadas durante la evolución, expresándose repentinamente durante una enfermedad; un ejemplo es el cambio metabólico en el corazón de dependiente de ácidos grasos a dependiente de glucosa en condiciones de hipoxia que aparece después de un infarto y puede subyacer a la dificultad de la regeneración de los cardiomiocitos. La heterocronía es la expresión de genes que provocan la aparición de rasgos en un momento diferente durante el desarrollo. La medicina evolutiva también explica las interacciones entre los patógenos y el huésped en enfermedades infecciosas. Los mecanismos implicados en la medicina evolutiva participan en la generación de enfermedades y pueden abordarse experimentalmente. Por tanto, la medicina experimental puede enriquecer la medicina evolutiva y el origen de muchos problemas de salud.


Assuntos
Evolução Biológica , Cardiologia , Fenótipo
19.
Int J Hypertens ; 2022: 2298329, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35774422

RESUMO

Cardiometabolic diseases, including hypertension, may result from exposure to high sugar diets during critical periods of development. Here, we studied the effect of sucrose ingestion during a critical period (CP) between postnatal days 12 and 28 of the rat on blood pressure, aortic histology, vascular smooth muscle phenotype, expression of metalloproteinases 2 and 9, and vascular contractility in adult rats and compared it with those of adult rats that received sucrose for 6 months and developed metabolic syndrome (MS). Blood pressure increased to a similar level in CP and MS rats. The diameter of lumen, media, and adventitia of aortas from CP rats was decreased. Muscle fibers were discontinuous. There was a decrease in the expression of alpha-actin in CP and MS rat aortas, suggesting a change to the secretory phenotype in vascular smooth muscle. Metalloproteinases 2 and 9 were decreased in CP and MS rats, suggesting that phenotype remains in an altered steady stationary state with little interchange of the vessel matrix. Aortic contraction to norepinephrine did not change, but aortic relaxation was diminished in CP and MS aortas. In conclusion, high sugar diets during the CP increase predisposition to hypertension in adults.

20.
Life Sci ; 289: 120227, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34921866

RESUMO

BACKGROUND: Ischemic kidney injury is a common clinical condition resulting from transient interruption of the kidney's normal blood flow, leading to oxidative stress, inflammation, and kidney dysfunction. The ketogenic diet (KD), a low-carbohydrate, high-fat diet that stimulates endogenous ketone body production, has potent antioxidant and anti-inflammatory effects in distinct tissues and might thus protect the kidney against ischemia and reperfusion (IR) injury. MAIN METHODS: Male Wistar rats were fed a KD or a control diet (CD) for three days before analyzing metabolic parameters or testing nephroprotection. We used two different models of kidney IR injury and conducted biochemical, histological, and Western blot analyses at 24 h and two weeks after surgery. KEY FINDINGS: Acute KD feeding caused protein acetylation, liver AMPK activation, and increased resistance to IR-induced kidney injury. At 24 h after IR, rats on KD presented reduced tubular damage and improved kidney functioning compared to rats fed with a CD. KD attenuated oxidative damage (protein nitration, 4-HNE adducts, and 8-OHdG), increased antioxidant defenses (GPx and SOD activity), and reduced inflammatory intermediates (IL6, TNFα, MCP1), p50 NF-κB expression, and cellular infiltration. Also, KD prevented interstitial fibrosis development at two weeks, up-regulation of HSP70, and chronic Klotho deficiency. SIGNIFICANCE: Our findings demonstrate for the first time that short-term KD increases tolerance to experimental kidney ischemia, opening the opportunity for future therapeutic exploration of a dietary preconditioning strategy to convey kidney protection in the clinic.


Assuntos
Dieta Cetogênica , Regulação da Expressão Gênica , Estresse Oxidativo , Insuficiência Renal Crônica , Animais , Biomarcadores/metabolismo , Inflamação/dietoterapia , Inflamação/metabolismo , Inflamação/patologia , Isquemia/dietoterapia , Isquemia/metabolismo , Isquemia/patologia , Masculino , Ratos , Ratos Wistar , Insuficiência Renal Crônica/dietoterapia , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/patologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa