RESUMO
Spray drying is one of the leading manufacturing methods for active pharmaceutical ingredients (APIs) owing to its rapid, single-step, and cost-effective nature. It also has the capacity to generate microspheres capable of controlled release of APIs including biomolecules and vaccines. However, one of the key challenges of spray-dried formulations especially with poly(lactic-co-glycolic acid) (PLGA)-based controlled-release injectables is burst release, where a significant fraction of the API is released prematurely within a short period of time following administration, leading to detrimental impact on the performance and quality of end products. This study uses a model API, bovine serum albumin (BSA) protein, to identify the sources of burst release that may affect the kinetics and performance of long-acting injectable microsphere formulations. Spray-dried microspheres with various formulations (i.e., variable BSA/PLGA ratios) were characterized in terms of their morphology, particle size, surface area, thermal properties, moisture content, as well as chemical compositions and their distributions to investigate the impact of spray drying on the burst release phenomenon. The results suggest that a relatively high initial release (85%) observed is mainly attributed to the protein distribution close to the particle surface. Morphology analysis provided evidence that the microspheres retained their spherical structure during the burst release phase. X-ray photoelectron spectroscopy, hard X-ray photoelectron spectroscopy, and argon cluster sputtering-assisted time-of-flight secondary ion mass spectrometry analysis suggest an enrichment of PLGA on particle surfaces with buried BSA protein. The statistically significant difference in particle size and surface area between three different formulations may be responsible for an initial variation in release but did not seem to alter the overall burst release profile. Considering the suggested source of burst release, the two-fluid spray-drying method, characterized by a single liquid feed delivering a preprepared emulsion, generated matrix-type microspheres with a surface layer of PLGA, as evidenced by surface analysis. The PLGA surface layer proved to be prone to degradation and pore formation, allowing for faster diffusion of BSA out of the microspheres, resulting in a burst release. Increasing the polymer concentration did not seem to halt this process.
RESUMO
Quantitative analysis of binary mixtures of tris(2-phenylpyridinato)iridium(III) (Ir(ppy)3) and tris(8-hydroxyquinolinato)aluminum (Alq3) by using an artificial neural network (ANN) system to mass spectra was attempted based on the results of a VAMAS (Versailles Project on Advanced Materials and Standards) interlaboratory study (TW2 A31) to evaluate matrix-effect correction and to investigate interface determination. Monolayers of binary mixtures having different Ir(ppy)3 ratios (0, 0.25, 0.50, 0.75, and 1.00), and the multilayers containing these mixtures and pure samples were measured using time-of-flight secondary ion mass spectrometry (ToF-SIMS) with different primary ion beams, OrbiSIMS (SIMS with both Orbitrap and ToF mass spectrometers), laser desorption ionization (LDI), desorption/ionization induced by neutral clusters (DINeC), and X-ray photoelectron spectroscopy (XPS). The mass spectra were analyzed using a simple ANN with one hidden layer. The Ir(ppy)3 ratios of the unknown samples and the interfaces of the multilayers were predicted using the simple ANN system, even though the mass spectra of binary mixtures exhibited matrix effects. The Ir(ppy)3 ratios at the interfaces indicated by the simple ANN were consistent with the XPS results and the ToF-SIMS depth profiles. The simple ANN system not only provided quantitative information on unknown samples, but also indicated important mass peaks related to each molecule in the samples without a priori information. The important mass peaks indicated by the simple ANN depended on the ionization process. The simple ANN results of the spectra sets obtained by a softer ionization method, such as LDI and DINeC, suggested large ions such as trimers. From the first step of the investigation to build an ANN model for evaluating mixture samples influenced by matrix effects, it was indicated that the simple ANN method is useful for obtaining candidate mass peaks for identification and for assuming mixture conditions that are helpful for further analysis.
RESUMO
Nanoparticles used for medical applications commonly possess coatings or surface functionalities intended to provide specific behavior in vivo, for example, the use of PEG to provide stealth properties. Direct, quantitative measurement of the surface chemistry and composition of such systems in a hydrated environment has thus far not been demonstrated, yet such measurements are of great importance for the development of nanomedicine systems. Here we demonstrate the first use of cryo-XPS for the measurement of two PEG-functionalized nanomedicines: a polymeric drug delivery system and a lipid nanoparticle mRNA carrier. The observed differences between cryo-XPS and standard XPS measurements indicate the potential of cryo-XPS for providing quantitative measurements of such nanoparticle systems in hydrated conditions.
Assuntos
Nanomedicina , Nanopartículas , Polietilenoglicóis/química , Sistemas de Liberação de Medicamentos , Nanopartículas/química , PolímerosRESUMO
Core-shell nanoparticles have attracted much attention in recent years due to their unique properties and their increasing importance in many technological and consumer products. However, the chemistry of nanoparticles is still rarely investigated in comparison to their size and morphology. In this review, the possibilities, limits, and challenges of X-ray photoelectron spectroscopy (XPS) for obtaining more insights into the composition, thickness, and homogeneity of nanoparticle coatings are discussed with four examples: CdSe/CdS quantum dots with a thick coating and a small core; NaYF4-based upconverting nanoparticles with a large Yb-doped core and a thin Er-doped coating; and two types of polymer nanoparticles with a poly(tetrafluoroethylene) core with either a poly(methyl methacrylate) or polystyrene coating. Different approaches for calculating the thickness of the coating are presented, like a simple numerical modelling or a more complex simulation of the photoelectron peaks. Additionally, modelling of the XPS background for the investigation of coating is discussed. Furthermore, the new possibilities to measure with varying excitation energies or with hard-energy X-ray sources (hard-energy X-ray photoelectron spectroscopy) are described. A discussion about the sources of uncertainty for the determination of the thickness of the coating completes this review. Graphical abstract.
Assuntos
Nanopartículas , Pontos Quânticos , Nanopartículas/química , Espectroscopia Fotoeletrônica , Polímeros , PoliestirenosRESUMO
We report the results of a Versailles Project on Advanced Materials and Standards interlaboratory study on the intensity scale calibration of x-ray photoelectron spectrometers using low-density polyethylene (LDPE) as an alternative material to gold, silver, and copper. An improved set of LDPE reference spectra, corrected for different instrument geometries using a quartz-monochromated Al Kα x-ray source, was developed using data provided by participants in this study. Using these new reference spectra, a transmission function was calculated for each dataset that participants provided. When compared to a similar calibration procedure using the NPL reference spectra for gold, the LDPE intensity calibration method achieves an absolute offset of â¼3.0% and a systematic deviation of ±6.5% on average across all participants. For spectra recorded at high pass energies (≥90 eV), values of absolute offset and systematic deviation are â¼5.8% and ±5.7%, respectively, whereas for spectra collected at lower pass energies (<90 eV), values of absolute offset and systematic deviation are â¼4.9% and ±8.8%, respectively; low pass energy spectra perform worse than the global average, in terms of systematic deviations, due to diminished count rates and signal-to-noise ratio. Differences in absolute offset are attributed to the surface roughness of the LDPE induced by sample preparation. We further assess the usability of LDPE as a secondary reference material and comment on its performance in the presence of issues such as variable dark noise, x-ray warm up times, inaccuracy at low count rates, and underlying spectrometer problems. In response to participant feedback and the results of the study, we provide an updated LDPE intensity calibration protocol to address the issues highlighted in the interlaboratory study. We also comment on the lack of implementation of a consistent and traceable intensity calibration method across the community of x-ray photoelectron spectroscopy (XPS) users and, therefore, propose a route to achieving this with the assistance of instrument manufacturers, metrology laboratories, and experts leading to an international standard for XPS intensity scale calibration.
RESUMO
Nanocrystalline thin films of PbS are obtained in a straightforward reaction by precipitation at the interface between toluene (containing a Pb precursor) and water (containing Na2S). Lead thiobiuret [Pb(SON(CN(i)Pr2)2)2] and lead diethyldithiocarbamate [Pb(S2CNEt2)2] precursors are used. The films are characterized by X-ray diffraction and electron microscopy, revealing typical particle sizes of 10-40 nm and preferred (200) orientation. Synchrotron-excited depth-profiling X-ray photoelectron spectroscopy (XPS) is used to determine the depth-dependent chemical composition as a function of surface aging in air for periods of up to 9 months. The as-synthesized films show a 1:1 Pb/S composition. Initial degradation occurs to form lead hydroxide and small quantities of surface-adsorbed -SH species. A lead-deficient Pb1-xS phase is produced as the aging proceeds. Oxidation of the sulfur occurs later to form sulfite and sulfate products that are highly localized at the surface layers of the nanocrystals. These species show logarithmic growth kinetics, demonstrating that the sulfite/sulfate layer acts to passivate the nanocrystals. Our results demonstrate that the initial reaction of the PbS nanocrystals (forming lead hydroxide) is incongruent. The results are discussed in the context of the use of PbS nanocrystals as light-harvesting elements in next-generation solar technology.
RESUMO
Synchrotron radiation photoelectron spectroscopy and near-edge X-ray absorption fine structure (NEXAFS) techniques have been used to study the adsorption of dopamine on a rutile TiO2 (110) single crystal. Photoemission results suggest that dopamine bonds through the oxygen molecules in a bidentate fashion. From the data, it is ambiguous whether the oxygens bond to the same 5-fold coordinated surface titanium atom or bridges across two, although based on the bonding of pyrocatechol on rutile TiO2 (110), it is likely that the dopamine bridges two titanium atoms. Using the searchlight effect, the carbon K-edge near-edge X-ray absorption fine structure NEXAFS spectra recorded for dopamine on rutile TiO2 (110) show the phenyl ring to be oriented at 78° ± 5° from the surface and twisted 11 ± 10° relative to the (001) direction.
Assuntos
Dopamina/química , Nanopartículas/química , Titânio/química , Adsorção , Carbono/química , Cristalografia por Raios X , Conformação Molecular , Oxigênio/química , Tamanho da Partícula , Espectroscopia Fotoeletrônica , Propriedades de Superfície , TermodinâmicaRESUMO
The quantification of the drug associated to nanoparticle carriers, often expressed in terms of encapsulation efficiency, is a regulatory requirement. The establishment of independent methods to evaluate this parameter provides a means for measurement validation, which is critical in providing confidence in the methods and enabling the robust characterization of nanomedicines. Chromatography is traditionally used to measure drug encapsulation into nanoparticles. Here, we describe an additional independent strategy based on analytical centrifugation. The encapsulation of diclofenac into nanocarriers was quantified based on the mass difference between placebo (i.e. unloaded) and loaded nanoparticles. This difference was estimated using particle densities measured by differential centrifugal sedimentation (DCS) and size and concentration values measured by particle tracking analysis (PTA). The proposed strategy was applied to two types of formulations, namely poly(lactic-co-glycolic acid) (PLGA) nanoparticles and nanostructured lipid carriers, which were analysed by DCS operated in sedimentation and flotation modes, respectively. The results were compared to those from high performance liquid chromatography (HPLC) measurements. Additionally, X-ray photoelectron spectroscopy analysis was used to elucidate the surface chemical composition of the placebo and loaded nanoparticles. The proposed approach enables the monitoring of batch-to-batch consistency and the quantification of diclofenac association to PLGA nanoparticles from 0.7 ng to 5 ng of drug per 1 µg of PLGA, with good linear correlation between DCS and HPLC results (R2 = 0.975). Using the same approach, similar quantification in lipid nanocarriers was possible for a loading of diclofenac ≥1.1 ng per 1 µg of lipids, with results in agreement with the HPLC method (R2 = 0.971). Hence, the strategy proposed here expands the analytical tools available for evaluating nanoparticles encapsulation efficiency, being thus significant for increasing the robustness of drug-delivery nanocarriers characterization.
Assuntos
Diclofenaco , Nanopartículas , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Ácido Poliglicólico/química , Ácido Láctico/química , Nanopartículas/química , Lipídeos , Tamanho da Partícula , Portadores de Fármacos/químicaRESUMO
X-ray photoelectron spectroscopy is a highly surface-sensitive analytical technique, capable of providing quantitative information on the chemical composition of materials within the top â¼10 nm of their surface. For samples consisting of distinct underlayer and overlayer materials, the thickness of the coating can also be determined if it falls within this â¼10 nm information depth, which is often the case for peptide layers. Such measurements are simple to perform for flat samples and can also be performed on nanoparticulate samples provided that either the core radius or total particle radius are known. Here, we describe a straightforward protocol for obtaining such measurements from peptide coatings on both flat surfaces and nanoparticles, including preparation of nanoparticle samples from suspension, data acquisition, and analysis.
Assuntos
Peptídeos/química , Espectroscopia Fotoeletrônica/métodos , Nanopartículas/química , Propriedades de SuperfícieRESUMO
The response of nanoparticles to exposure to ambient conditions and especially oxidation is fundamental to the application of nanotechnology. Bimetallic platinum-titanium nanoparticles of selected mass, 30 kDa and 90 kDa, were produced using a magnetron sputtering gas condensation cluster source and deposited onto amorphous carbon TEM grids. The nanoparticles were analysed with a Cs-corrected Scanning Transmission Electron Microscope (STEM) in High Angle Annular Dark Field (HAADF) mode. It was observed that prior to full Ti oxidation, Pt atoms were dispersed within a Ti shell. However, after full oxidation by prolonged exposure to ambient conditions prior to STEM, the smaller size 30 kDa particles form a single Pt core and the larger size 90 kDa particles exhibit a multi-core structure. Electron beam annealing induced a single core morphology in the larger particles. First principles density functional theory (DFT) calculations were employed to calculate the lowest energy structure of the Pt-Ti nanoparticles with and without the presence of oxygen. It was demonstrated that, as the concentration of oxygen increases, the lowest energy structure changes from dispersed Pt to multiple Pt cores and finally a single Pt core, which is in good agreement with the experimental observations.
RESUMO
This paper extends a straightforward technique for the calculation of shell thicknesses in core-shell nanoparticles to the case of core-shell-shell nanoparticles using X-ray Photoelectron Spectroscopy (XPS) data. This method can be applied by XPS analysts and does not require any numerical simulation or advanced knowledge, although iteration is required in the case where both shell thicknesses are unknown. The standard deviation in the calculated thicknesses vs simulated values is typically less than 10%, which is the uncertainty of the electron attenuation lengths used in XPS analysis.
RESUMO
We report the results of a VAMAS (Versailles Project on Advanced Materials and Standards) inter-laboratory study on the measurement of the shell thickness and chemistry of nanoparticle coatings. Peptide-coated gold particles were supplied to laboratories in two forms: a colloidal suspension in pure water and; particles dried onto a silicon wafer. Participants prepared and analyzed these samples using either X-ray photoelectron spectroscopy (XPS) or low energy ion scattering (LEIS). Careful data analysis revealed some significant sources of discrepancy, particularly for XPS. Degradation during transportation, storage or sample preparation resulted in a variability in thickness of 53 %. The calculation method chosen by XPS participants contributed a variability of 67 %. However, variability of 12 % was achieved for the samples deposited using a single method and by choosing photoelectron peaks that were not adversely affected by instrumental transmission effects. The study identified a need for more consistency in instrumental transmission functions and relative sensitivity factors, since this contributed a variability of 33 %. The results from the LEIS participants were more consistent, with variability of less than 10 % in thickness and this is mostly due to a common method of data analysis. The calculation was performed using a model developed for uniform, flat films and some participants employed a correction factor to account for the sample geometry, which appears warranted based upon a simulation of LEIS data from one of the participants and comparison to the XPS results.