Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chemistry ; 29(61): e202302155, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37665089

RESUMO

The challenging metal-free catalytic hydrogenolysis of silyl chlorides to hydrosilanes is unlocked by using an inverse frustrated Lewis pair (FLP), combining a mild Lewis acid (Cy2 BCl) and a strong phosphazene base (BTPP) in mild conditions (10 bar of H2 , r. t.). In the presence of a stoichiometric amount of the base, the hydrosilanes R3 SiH (R=Me, Et, Ph) are generated in moderate to high yields (up to 95 %) from their chlorinated counterparts. A selective formation of the valuable difunctional monohydride Me2 SiHCl is also obtained from Me2 SiCl2 . A mechanism is proposed based on stoichiometric experiments and DFT calculations; it highlights the critical role of borohydride species generated by the heterolytic splitting of H2 .

2.
Angew Chem Int Ed Engl ; 62(1): e202214069, 2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-36259458

RESUMO

Easily accessible via a simple esterification of alcohols with formic acid, alkyl formates are used as a novel class of transfer hydroalkylation reagents, CO2 acting as a traceless linker. As a proof-of-concept, their reactivity in the transfer hydroalkylation of imines is investigated, using a ruthenium-based catalyst and LiI as promoter to cleave the C-O σ-bond of the formate scaffold. Providing tertiary amines, the reaction displays a divergent regioselectivity compared to previously reported transfer hydroalkylation strategies.

3.
Angew Chem Int Ed Engl ; 61(33): e202206170, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35582898

RESUMO

The partial reduction of amides is a challenging transformation that must overcome the intrinsic stability of the amide bond and exhibit high chemoselective control to avoid overreduction to amine products. To address this challenge, we describe a zirconium-catalysed synthesis of imines by the reductive deoxygenation of secondary amides. This reaction exploits the excellent chemoselectivity of Schwartz's reagent (Cp2 Zr(H)Cl) and utilises (EtO)3 SiH as a mild stoichiometric reductant to enable catalyst turnover. The reaction generally proceeds with high yields (19 examples, 51 to 95 % yield) and tolerates a variety of functional groups (alkene, ester, nitro, etc.). Stoichiometric mechanistic investigations suggest the regeneration of the active [Zr]-H catalyst is achieved through the metathesis of Si-H and Zr-OR σ-bonds.

4.
Angew Chem Int Ed Engl ; 61(23): e202200911, 2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35315969

RESUMO

The metal-free catalytic hydrogenolysis of silyl triflates and halides (I, Br) to hydrosilanes is unlocked by using arylborane Lewis acids as catalysts. In the presence of a nitrogen base, the catalyst acts as a Frustrated Lewis Pair (FLP) able to split H2 and generate a boron hydride intermediate capable of reducing (pseudo)halosilanes. This metal-free organocatalytic system is competitive with metal-based catalysts and enables the formation of a variety of hydrosilanes at room temperature in high yields (>85 %) under a low pressure of H2 (≤10 bar).

5.
J Am Chem Soc ; 143(15): 5659-5665, 2021 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-33825486

RESUMO

The incorporation of carbon-14 allows tracking of organic molecules and provides vital knowledge on their fate. This information is critical in pharmaceutical development, crop science, and human food safety evaluation. Herein, a transition-metal-catalyzed procedure enabling carbon isotope exchange on aromatic nitriles is described. By utilizing the radiolabeled precursor Zn([14C]CN)2, this protocol allows the insertion of the desired carbon tag without the need for structural modifications, in a single step. By reducing synthetic costs and limiting the generation of radioactive waste, this procedure will facilitate the labeling of nitrile containing drugs and accelerate 14C-based ADME studies supporting drug development.


Assuntos
Preparações Farmacêuticas/química , Radioisótopos de Carbono/química , Catálise , Complexos de Coordenação/química , Reação de Cicloadição , Marcação por Isótopo , Conformação Molecular , Nitrilas/química , Elementos de Transição/química , Zinco/química
6.
Chemistry ; 27(72): 18047-18053, 2021 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-34652867

RESUMO

An air-tolerant Cu-catalyzed sulfonylative Hiyama cross-coupling reaction enabling the formation of diaryl sulfones is described. Starting from aryl silanes, DABSO and aryliodides, the reaction tolerates a large variety of polar functional groups (amines, ketones, esters, aldehydes). Control experiments coupled with DFT calculations shed light on the mechanism, characterized by the formation of a Cu(I)-sulfinate intermediate via fast insertion of a SO2 molecule.


Assuntos
Cobre , Silanos , Catálise , Ésteres , Cetonas
7.
Inorg Chem ; 60(21): 16140-16148, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34647730

RESUMO

Catalytic transformation of oxygenated compounds is challenging in f-element chemistry due to the high oxophilicity of the f-block metals. We report here the first Meerwein-Ponndorf-Verley (MPV) reduction of carbonyl substrates with uranium-based catalysts, in particular from a series of uranyl(VI) compounds where [UO2(OTf)2] (1) displays the greatest efficiency (OTf = trifluoromethanesulfonate). [UO2(OTf)2] reduces a series of aromatic and aliphatic aldehydes and ketones into their corresponding alcohols with moderate to excellent yields, using iPrOH as a solvent and a reductant. The reaction proceeds under mild conditions (80 °C) with an optimized catalytic charge of 2.3 mol % and KOiPr as a cocatalyst. The reduction of aldehydes (1-10 h) is faster than that of ketones (>15 h). NMR investigations clearly evidence the formation of hemiacetal intermediates with aldehydes, while they are not formed with ketones.

8.
J Am Chem Soc ; 142(51): 21292-21297, 2020 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-33315367

RESUMO

A series of arene-bridged dithorium complexes was synthesized via the reduction by potassium graphite of a Th(IV) precursor in the presence of arenes. All these compounds adopt an inverse-sandwich structure, with the arene bridging two thorium centers in a µ-η6,η6-mode. Structural and spectroscopic data support the assignment of two Th(IV) ions and an arene tetraanion, which is an aromatic structure according to Hückel's rule. Arene exchange reactions revealed that the stability of the corresponding compounds follows the series naphthalene ≪ toluene < benzene ≈ biphenyl. Reactivity studies showed that they function as four-electron reductants capable to reduce anthracene, cyclooctatetraene, alkynes, and azobenzene, while a mononuclear thorium anthracene complex could reduce benzene. Density functional theory calculations unveiled that the bonding interactions consist of δ bonds between thorium 6d and 5f orbitals and arene π* orbitals, showing a significant covalent character, able to stabilize highly reduced arene ligands.

9.
Angew Chem Int Ed Engl ; 59(33): 14019-14023, 2020 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-32352622

RESUMO

A novel strategy to prepare methanol from formic acid without an external reductant is presented. The overall process described herein consists of the disproportionation of silyl formates to methoxysilanes, catalyzed by ruthenium complexes, and the production of methanol by simple hydrolysis. Aqueous solutions of MeOH (>1 mL, >70 % yield) were prepared in this manner. The sustainability of the reaction has been established by recycling of the silicon-containing by-products with inexpensive, readily available, and environmentally benign reagents.

10.
Angew Chem Int Ed Engl ; 59(32): 13490-13495, 2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32348625

RESUMO

A transition-metal-free carbon isotope exchange procedure on phenyl acetic acids is described. Utilizing the universal precursor CO2 , this protocol allows the carbon isotope to be inserted into the carboxylic acid position, with no need of precursor synthesis. This procedure enabled the labeling of 15 pharmaceuticals and was compatible with carbon isotopes [14 C] and [13 C]. A proof of concept with [11 C] was also obtained with low molar activity valuable for distribution studies.

11.
J Am Chem Soc ; 141(2): 780-784, 2019 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-30586301

RESUMO

A copper-catalyzed procedure enabling dynamic carbon isotope exchange is described. Utilizing the universal precursor [14C]CO2, this protocol allows to insert, in one single step, the desired carbon tag into carboxylic acids with no need of structural modifications. Reducing synthetic costs and limiting the generation of radioactive waste, this procedure will facilitate the access to carboxylic acids containing drugs and accelerate early 14C-based ADME studies supporting drug development.


Assuntos
Dióxido de Carbono/química , Ácidos Carboxílicos/química , Compostos Radiofarmacêuticos/química , Isótopos de Carbono/química , Radioisótopos de Carbono/química , Ácidos Carboxílicos/síntese química , Catálise , Cobre/química , Marcação por Isótopo/métodos , Compostos Radiofarmacêuticos/síntese química
12.
Chemistry ; 25(34): 8118-8126, 2019 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-30968976

RESUMO

The guanidine 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD) and the substituted derivatives [TBD-SiR2 ]+ and TBD-BR2 reacted with SO2 to give different FLP-SO2 adducts. Molecular structures, elucidated by X-ray diffraction, showed some structural similarities with the analogous CO2 adducts. Thermodynamic stabilities were both experimentally evidenced and computed through DFT calculations. The underlying parameters governing the relative stabilities of the different SO2 and CO2 adducts were discussed from a theoretical standpoint, with a focus on the influence of the Lewis acidic moiety.

13.
Angew Chem Int Ed Engl ; 58(48): 17215-17219, 2019 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-31529586

RESUMO

The selective decarbonylation of formic acid was achieved under transition-metal-free conditions. Using a liquid chemical-looping strategy, the thermodynamically favored dehydrogenation of formic acid was shut down, yielding a pure stream of CO with no H2 or CO2 contamination. The transformation involves a two-step sequence where methanol is used as a recyclable looping agent to yield methylformate, which is subsequently decomposed to carbon monoxide using alkoxides as catalysts.

14.
Angew Chem Int Ed Engl ; 58(32): 10884-10887, 2019 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-31150564

RESUMO

The first iron catalysts able to promote the formal insertion of CO into the C-N bond of amines are reported. Using low-valent iron complexes, including K2 [Fe(CO)4 ], amides are formed from aromatic and aliphatic amines, in the presence of an iodoalkane promoter. Inorganic Lewis acids, such as AlCl3 and Nd(OTf)3 , have a positive influence on the catalytic activity of the iron salts, enabling the carbonylation at a low pressure of CO (6 to 8 bars).

15.
Angew Chem Int Ed Engl ; 57(12): 3084-3088, 2018 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-29377509

RESUMO

The first addition of alcohols to carbodiimides catalyzed by transition-metal-free compounds employs 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD) and its alkali metal salts. Isoureas are obtained in short reaction times and high yields when TBDK is used as the catalyst. Control of the coordination sphere of potassium with exogenous chelating ligands, in combination with mechanistic DFT calculations, demonstrated the role and positive influence of the alkali-metal cation on the kinetics.

17.
Inorg Chem ; 56(7): 3834-3848, 2017 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-28294603

RESUMO

Mechanistic studies of the reduction of FeIII and FeII salts by aryl Grignard reagents in toluene/tetrahydrofuran mixtures in the absence of a supporting ligand, as well as structural insights regarding the nature of the low-valent iron species obtained at the end of this reduction process, are reported. It is shown that several reduction pathways can be followed, depending on the starting iron precursor. We demonstrate, moreover, that these pathways lead to a mixture of Fe0 and FeI complexes regardless of the nature of the precursor. Mössbauer and 1H NMR spectroscopies suggest that diamagnetic 16-electron bisarene complexes such as (η4-C6H5Me)2Fe0 can be formed as major species (85% of the overall iron quantity). The formation of a η6-arene-ligated low-spin FeI complex as a minor species (accounting for ca. 15% of the overall iron quantity) is attested by Mössbauer spectroscopy, as well as by continuous-wave electron paramagnetic resonance (EPR) and pulsed-EPR (HYSCORE) spectroscopies. The nature of the FeI coordination sphere is discussed by means of isotopic labeling experiments and density functional theory calculations. It is shown that the most likely low-spin FeI candidate obtained in these systems is a diphenylarene-stabilized species [(η6-C6H5Me)FeIPh2]- exhibiting an idealized C2v topology. This enlightens the nature of the lowest valence states accommodated by iron during the reduction of FeIII and FeII salts by aryl Grignard reagents in the absence of any additional coligand, which so far remained rather unknown. The reactivity of these low-valent FeI and Fe0 complexes in aryl-heteroaryl Kumada cross-coupling conditions has also been investigated, and it is shown that the zerovalent Fe0 species can be used efficiently as a precursor in this reaction, whereas the FeI oxidation state does not exhibit any reactivity.

18.
Angew Chem Int Ed Engl ; 56(20): 5616-5619, 2017 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-28402020

RESUMO

The conversion of SO2 into arylsulfones under metal-free conditions was achieved for the first time by reacting SO2 with (hetero)arylsilanes and alkylhalides in the presence of a fluoride source. The mechanism of this transformation was elucidated based on DFT calculations, which highlight the influence of SO2 in promoting C-Si bond cleavage.

19.
Chemistry ; 22(9): 2930-4, 2016 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-26712565

RESUMO

A one-step conversion of CO2 into heteroaromatic esters is presented under metal-free conditions. Using fluoride anions as promoters for the C-Si bond activation, pyridyl, furanyl, and thienyl organosilanes are successfully carboxylated with CO2 in the presence of an electrophile. The mechanism of this unprecedented reaction has been elucidated based on experimental and computational results, which show a unique catalytic influence of CO2 in the C-Si bond activation of pyridylsilanes. The methodology is applied to 18 different esters, and it has enabled the incorporation of CO2 into a polyester material for the first time.

20.
Angew Chem Int Ed Engl ; 55(45): 14096-14100, 2016 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-27723213

RESUMO

Silyl formates are investigated for the first time as surrogates of hydrosilanes. In the presence of a well-defined ruthenium catalyst, these reagents are shown to promote the chemoselective reduction of a variety of aldehydes by transfer hydrosilylation. Mechanistic investigations have shown that genuine hydrosilane species are avoided during catalysis. The mechanism involves a sequence of decarboxylation/insertion/transmetallation steps.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa