Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 118(4): 047801, 2017 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-28186782

RESUMO

Confinement induces various modifications in the dynamics of polymers as compared to bulk. We focus here on the role of dynamical heterogeneities on the mechanics of confined polymers. Using a simple model that allows computation of the mechanical response over 10 decades in frequency, we show that the local mechanical coupling controlling the macroscopic response in the bulk disappears in a confined geometry. The slowest domains significantly contribute to the mechanical response for increasing confinement. As a consequence, the apparent glass transition is broadened and shifted towards lower frequencies as confinement increases. We compare our numerical predictions with experiments performed on poly(ethylacrylate) chains in model filled elastomers. We suggest that the change of elastic coupling between domains induced by confinement should contribute significantly to the polymer mobility shift observed on filled systems.

2.
Eur Phys J E Soft Matter ; 40(12): 116, 2017 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-29274066

RESUMO

In this paper we focus on the role of dynamical heterogeneities on the non-linear response of polymers in the glass transition domain. We start from a simple coarse-grained model that assumes a random distribution of the initial local relaxation times and that quantitatively describes the linear viscoelasticity of a polymer in the glass transition regime. We extend this model to non-linear mechanics assuming a local Eyring stress dependence of the relaxation times. Implementing the model in a finite element mechanics code, we derive the mechanical properties and the local mechanical fields at the beginning of the non-linear regime. The model predicts a narrowing of distribution of relaxation times and the storage of a part of the mechanical energy --internal stress-- transferred to the material during stretching in this temperature range. We show that the stress field is not spatially correlated under and after loading and follows a Gaussian distribution. In addition the strain field exhibits shear bands, but the strain distribution is narrow. Hence, most of the mechanical quantities can be calculated analytically, in a very good approximation, with the simple assumption that the strain rate is constant.

3.
J Microsc ; 241(3): 243-60, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21118222

RESUMO

The increase of observations and computational capabilities favoured the numerical simulation of microstructure to derive the effective properties of materials. Indeed, the multiscale approaches, that use homogenization techniques, enable us to estimate or to give bounds of the overall properties of heterogeneous media. In this work, the objective is to develop a three-dimensional mathematical model of the morphology of the microstructure of rubber composite containing carbon black nano-fillers. This multiscale model consists of a combination of some primary models that correspond to the physical scales of the microstructure. It is identified according to an original method that uses statistical moments from experimental transmission electronic microscope (TEM) image data and from numerical TEM simulations. This method leads to three-dimensional representative simulations of microstructures that take the complex clustering effect of particles in aggregates, into account. Finally, the identified model of the morphology satisfies the experimental percolation rate of the carbon black aggregates in the material.

4.
J Tissue Eng ; 2010: 712370, 2010 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-21350646

RESUMO

Bone tunnel healing is an important consideration after anterior cruciate ligament (ACL) replacement surgery. Recently, a variety of materials have been proposed for improving this healing process, including autologous bone tissue, cells, artificial proteins, and calcium salts. Amongst these materials are calcium phosphates (CaPs), which are known for their biocompatibility and are widely commercially available. As with the majority of the materials investigated, CaPs have been shown to advance the healing of bone tunnel tissue in animal studies. Mechanical testing shows fixation strengths to be improved, particularly by the application of CaP-based cement in the bone tunnel. Significantly, CaP-based cements have been shown to produce improvements comparable to those induced by potentially more complex treatments such as biologics (including fibronectin and chitin) and cultured cells. Further investigation of CaP-based treatment in the bone tunnels during ACL replacement is therefore warranted in order to establish what improvements in healing and resulting clinical benefits may be achieved through its application.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa