Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Am J Physiol Renal Physiol ; 323(4): F411-F424, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35979968

RESUMO

While angiotensin-converting enzyme (ACE) regulates blood pressure by producing angiotensin II as part of the renin-angiotensin system, we recently reported that elevated ACE in neutrophils promotes an effective immune response and increases resistance to infection. Here, we investigate if such neutrophils protect against renal injury in immune complex (IC)-mediated crescentic glomerulonephritis (GN) through complement. Nephrotoxic serum nephritis (NTN) was induced in wild-type and NeuACE mice that overexpress ACE in neutrophils. Glomerular injury of NTN in NeuACE mice was attenuated with much less proteinuria, milder histological injury, and reduced IC deposits, but presented with more glomerular neutrophils in the early stage of the disease. There were no significant defects in T and B cell functions in NeuACE mice. NeuACE neutrophils exhibited enhanced IC uptake with elevated surface expression of FcγRII/III and complement receptor CR1/2. IC uptake in neutrophils was enhanced by NeuACE serum containing elevated complement C3b. Given no significant complement activation by ACE, this suggests that neutrophil ACE indirectly preactivates C3 and that the C3b-CR1/2 axis and elevated FcγRII/III play a central role in IC elimination by neutrophils, resulting in reduced glomerular injury. The present study identified a novel renoprotective role of ACE in glomerulonephritis; elevated neutrophilic ACE promotes elimination of locally formed ICs in glomeruli via C3b-CR1/2 and FcγRII/III, ameliorating glomerular injury.NEW & NOTEWORTHY We studied immune complex (IC)-mediated crescentic glomerulonephritis in NeuACE mice that overexpress ACE only in neutrophils. Such mice show no significant defects in humoral immunity but strongly resist nephrotoxic serum nephritis (less proteinuria, milder histological damage, reduced IC deposits, and more glomerular neutrophils). NeuACE neutrophils enhanced IC uptake via increased surface expression of CR1/2 and FcgRII/III, as well as elevated serum complement C3b. These results suggest neutrophil ACE as a novel approach to reducing glomerulonephritis.


Assuntos
Glomerulonefrite , Nefrite , Angiotensina II/metabolismo , Animais , Complexo Antígeno-Anticorpo/metabolismo , Complemento C3b/metabolismo , Glomerulonefrite/metabolismo , Camundongos , Nefrite/metabolismo , Neutrófilos/metabolismo , Proteinúria/metabolismo
2.
J Neurovirol ; 28(4-6): 483-496, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36070137

RESUMO

Fatty acid-binding proteins (FABPs) are relevant to multiple neurodegenerative diseases. However, the roles and mechanisms of FABPs in HIV-associated neurocognitive disorder (HAND) remain yet unclear. In this study, cultured BV-2 microglial cells and HT-22 neuronal cells were used for in vitro experiments and HAND mouse models were constructed through intracerebroventricular injection of lentiviral vectors for in vivo experiments. FABP expression was determined using quantitative reverse transcription polymerase chain reaction (qRT-PCR) and Western blot. The interrelationship between Fabp4 and NF-κB signaling was investigated using chromatin immunoprecipitation, qRT-PCR, and Western blot. The role of Fabp4 in regulating inflammatory response was determined using qRT-PCR, enzyme-linked immunosorbent assay, Western blot, and immunofluorescence staining. Cell viability and apoptosis were analyzed using cell counting kit-8 assay and flow cytometry assay, respectively. Our results suggested an upregulation of Fabp4 expression in the presence of Tat. Tat-induced Fabp4 expression was directly regulated by NF-κB p65, followed by, Fabp4 facilitating Tat-activated NF-κB signaling pathway. We also observed that Fabp4 knockdown in microglial cells significantly suppressed inflammatory response and neuronal apoptosis both in vitro and in vivo. In conclusion, the presence of Tat in microglial cells results in Fabp4 and NF-κB to form a positive feedback loop leading to exacerbate inflammatory response and neuronal apoptosis.


Assuntos
HIV-1 , NF-kappa B , Camundongos , Animais , NF-kappa B/genética , NF-kappa B/metabolismo , Microglia/metabolismo , HIV-1/metabolismo , Retroalimentação , Apoptose , Proteínas de Ligação a Ácido Graxo/metabolismo
3.
J Biol Chem ; 295(5): 1369-1384, 2020 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-31871049

RESUMO

Angiotensin-converting enzyme (ACE) affects blood pressure. In addition, ACE overexpression in myeloid cells increases their immune function. Using MS and chemical analysis, we identified marked changes of intermediate metabolites in ACE-overexpressing macrophages and neutrophils, with increased cellular ATP (1.7-3.0-fold) and Krebs cycle intermediates, including citrate, isocitrate, succinate, and malate (1.4-3.9-fold). Increased ATP is due to ACE C-domain catalytic activity; it is reversed by an ACE inhibitor but not by an angiotensin II AT1 receptor antagonist. In contrast, macrophages from ACE knockout (null) mice averaged only 28% of the ATP levels found in WT mice. ACE overexpression does not change cell or mitochondrial size or number. However, expression levels of the electron transport chain proteins NDUFB8 (complex I), ATP5A, and ATP5ß (complex V) are significantly increased in macrophages and neutrophils, and COX1 and COX2 (complex IV) are increased in macrophages overexpressing ACE. Macrophages overexpressing ACE have increased mitochondrial membrane potential (24% higher), ATP production rates (29% higher), and maximal respiratory rates (37% higher) compared with WT cells. Increased cellular ATP underpins increased myeloid cell superoxide production and phagocytosis associated with increased ACE expression. Myeloid cells overexpressing ACE indicate the existence of a novel pathway in which myeloid cell function can be enhanced, with a key feature being increased cellular ATP.


Assuntos
Trifosfato de Adenosina/metabolismo , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Células Mieloides/metabolismo , Peptidil Dipeptidase A/metabolismo , Animais , Ciclo do Ácido Cítrico , Ciclo-Oxigenase 1/metabolismo , Ciclo-Oxigenase 2/metabolismo , Complexo I de Transporte de Elétrons/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Neutrófilos/metabolismo , Oxirredução , Estresse Oxidativo , Peptidil Dipeptidase A/genética , Regulação para Cima
4.
Opt Lett ; 46(10): 2252-2255, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33988557

RESUMO

Metasurfaces consisting of different shapes of resonant units are used to manipulate light beams at subwavelength scales. In many cases, interactions among the resonant units are suppressed or avoided because of mode splitting in metasurfaces. Here we theoretically and numerically investigate metasurfaces composed of multiple antennas with anti-Hermitian coupling in a single layer. By utilizing the anti-Hermitian coupling, the results show that antennas with similar resonance frequencies at a subwavelength distance can individually absorb their corresponding frequency photons. The antennas whose reflection phase can be tailored by changing the number of antennas have the same resonance frequencies. This Letter paves the way for various potential applications in broadband absorption, photon sorting, image sensors, and phase modulation.

5.
Nanotechnology ; 32(41)2021 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-34237709

RESUMO

Polyacrylonitrile/Ti3C2TxMXene/silver nanoparticles fiber membranes with different silver nanoparticles contents and thickness of porous structure have been successfully prepared by electrospinning. Through the measurement of terahertz time domain spectrum, the shielding effect of the fiber membrane with 1% silver nanoparticles content can reach up to 12 dB. Moreover, the thickness of the spinning fiber membranes is controlled by adjusting the spinning time, so as to better analyze the influence of the thickness of the shielding performance in terahertz band. We attribute this excellent phenomenon to porous structure of the spun fiber membrane and combination of Ti3C2TxMXene with few-layers and silver nanoparticles to increase the absorption and conductivity of the fiber membrane, thereby enhancing the shielding effect in terahertz range. Meanwhile, the prepared polyacrylonitrile/Ti3C2TxMXene/silver nanoparticles fiber membranes show good stability and little change in terahertz shielding effect after high temperature annealing. This may provide potential ideas about the development of high-performance terahertz shielding materials, which are of great significance of terahertz electromagnetic shielding.

6.
Appl Opt ; 60(22): 6520-6525, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34612889

RESUMO

Based on asymmetric graphene ellipses, the tunable propagation characteristics of metamaterial absorber (MMA) have been investigated in the THz region. Two distinct absorption peaks of 84% and 90% are observed at 1.06 THz and 1.67 THz, respectively. Besides a high Q factor exceeding 20, the Fano resonance can also be modulated in a wide range (e.g., the frequency modulation depth reaches more than 43.8% if the Fermi energy level changes in the range of 0.2-1.0 eV). Additionally, a bidirectional THz MMA is achieved by replacing the metal substrate with a uniform graphene layer. If the terahertz wave is incident in the forward direction, the proposed graphene double stripe microstructure shows a typical MMA with its absorption reaching 88%. On the other hand, if the terahertz wave is incident in the reverse direction, the graphene double stripe microstructure behaves as a reflective modulator, and its amplitude and frequency MD will reach 60% and 85%. These results contribute to the design of tunable THz devices, such as filters, absorbers, and modulators.

7.
J Biol Chem ; 294(12): 4368-4380, 2019 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-30670595

RESUMO

Angiotensin-converting enzyme (ACE) can hydrolyze many peptides and plays a central role in controlling blood pressure. Moreover, ACE overexpression in monocytes and macrophages increases resistance of mice to tumor growth. ACE is composed of two independent catalytic domains. Here, to investigate the specific role of each domain in tumor resistance, we overexpressed either WT ACE (Tg-ACE mice) or ACE lacking N- or C-domain catalytic activity (Tg-NKO and Tg-CKO mice) in the myeloid cells of mice. Tg-ACE and Tg-NKO mice exhibited strongly suppressed growth of B16-F10 melanoma because of increased ACE expression in macrophages, whereas Tg-CKO mice resisted melanoma no better than WT animals. The effect of ACE overexpression reverted to that of the WT enzyme with an ACE inhibitor but not with an angiotensin II type 1 (AT1) receptor antagonist. ACE C-domain overexpression in macrophages drove them toward a pronounced M1 phenotype upon tumor stimulation, with increased activation of NF-κB and signal transducer and activator of transcription 1 (STAT1) and decreased STAT3 and STAT6 activation. Tumor necrosis factor α (TNFα) is important for M1 activation, and TNFα blockade reverted Tg-NKO macrophages to a WT phenotype. Increased ACE C-domain expression increased the levels of reactive oxygen species (ROS) and of the transcription factor C/EBPß in macrophages, important stimuli for TNFα expression, and decreased expression of several M2 markers, including interleukin-4Rα. Natural ACE C-domain-specific substrates are not well-described, and we propose that the peptide(s) responsible for the striking ACE-mediated enhancement of myeloid function are substrates/products of the ACE C-domain.


Assuntos
Polaridade Celular , Macrófagos/citologia , Melanoma Experimental/patologia , Peptidil Dipeptidase A/metabolismo , Animais , Catálise , Linhagem Celular Tumoral , Sobrevivência Celular , Regulação Neoplásica da Expressão Gênica , Macrófagos/imunologia , Melanoma Experimental/enzimologia , Melanoma Experimental/genética , Melanoma Experimental/imunologia , Camundongos , Camundongos Transgênicos , NF-kappa B/metabolismo , Peptidil Dipeptidase A/química , Fator de Transcrição STAT1/metabolismo , Fator de Necrose Tumoral alfa/biossíntese
8.
Cell Mol Biol Lett ; 25: 31, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32508938

RESUMO

Angiotensin-converting enzyme (ACE), a dicarboxypeptidase, plays a major role in the regulation of blood pressure by cleaving angiotensin I into angiotensin II (Ang II), a potent vasoconstrictor. Because of its wide substrate specificity and tissue distribution, ACE affects many diverse biological processes. In inflammatory diseases, including granuloma, atherosclerosis, chronic kidney disease and bacterial infection, ACE expression gets upregulated in immune cells, especially in myeloid cells. With increasing evidences connecting ACE functions to the pathogenesis of these acquired diseases, it is suggested that ACE plays a vital role in immune functions. Recent studies with mouse models of bacterial infection and tumor suggest that ACE plays an important role in the immune responses of myeloid cells. Inhibition of ACE suppresses neutrophil immune response to bacterial infection. In contrast, ACE overexpression in myeloid cells strongly induced bacterial and tumor resistance in mice. A detailed biochemical understanding of how ACE activates myeloid cells and which ACE peptide(s) (substrate or product) mediate these effects could lead to the development of novel therapies for boosting immunity against a variety of stimuli, including bacterial infection and tumor.


Assuntos
Hematopoese/imunologia , Inflamação/imunologia , Células Mieloides/imunologia , Peptidil Dipeptidase A/fisiologia , Imunidade Adaptativa , Animais , Infecções Bacterianas/imunologia , Humanos , Camundongos , Neoplasias/imunologia , Peptidil Dipeptidase A/imunologia
9.
Biochem Biophys Res Commun ; 520(3): 573-579, 2019 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-31615657

RESUMO

BACKGROUND: Macrophages are ubiquitous in all stages of atherosclerosis, exerting tremendous impact on lesion progression and plaque stability. Because macrophages in atherosclerotic plaques express angiotensin-converting enzyme (ACE), current dogma posits that local myeloid-mediated effects worsen the disease. In contrast, we previously reported that myeloid ACE overexpression augments macrophage resistance to various immune challenges, including tumors, bacterial infection and Alzheimer's plaque deposition. Here, we sought to assess the impact of myeloid ACE on atherosclerosis. METHODS: A mouse model in which ACE is overexpressed in myelomonocytic lineage cells, called ACE10, was generated and sequentially crossed with ApoE-deficient mice to create ACE10/10ApoE-/- (ACE10/ApoE). Control mice were ACEWT/WTApoE-/- (WT/ApoE). Atherosclerosis was induced using an atherogenic diet alone, or in combination with unilateral nephrectomy plus deoxycorticosterone acetate (DOCA) salt for eight weeks. RESULTS: With an atherogenic diet alone or in combination with DOCA, the ACE10/ApoE mice showed significantly less atherosclerotic plaques compared to their WT/ApoE counterparts (p < 0.01). When recipient ApoE-/- mice were reconstituted with ACE10/10 bone marrow, these mice showed significantly reduced lesion areas compared to recipients reconstituted with wild type bone marrow. Furthermore, transfer of ACE-deficient bone marrow had no impact on lesion area. CONCLUSION: Our data indicate that while myeloid ACE may not be required for atherosclerosis, enhanced ACE expression paradoxically reduced disease progression.


Assuntos
Aterosclerose/enzimologia , Aterosclerose/prevenção & controle , Células Mieloides/enzimologia , Peptidil Dipeptidase A/metabolismo , Animais , Aterosclerose/genética , Pressão Sanguínea , Transplante de Medula Óssea , Linhagem da Célula/genética , Colesterol/sangue , Dieta Aterogênica , Modelos Animais de Doenças , Progressão da Doença , Humanos , Macrófagos/enzimologia , Macrófagos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , Células Mieloides/patologia , Peptidil Dipeptidase A/genética , Regulação para Cima
10.
J Am Soc Nephrol ; 29(10): 2546-2561, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30185469

RESUMO

BACKGROUND: Recent evidence emphasizes the critical role of inflammation in the development of diabetic nephropathy. Angiotensin-converting enzyme (ACE) plays an active role in regulating the renal inflammatory response associated with diabetes. Studies have also shown that ACE has roles in inflammation and the immune response that are independent of angiotensin II. ACE's two catalytically independent domains, the N- and C-domains, can process a variety of substrates other than angiotensin I. METHODS: To examine the relative contributions of each ACE domain to the sodium retentive state, renal inflammation, and renal injury associated with diabetic kidney disease, we used streptozotocin to induce diabetes in wild-type mice and in genetic mouse models lacking either a functional ACE N-domain (NKO mice) or C-domain (CKO mice). RESULTS: In response to a saline challenge, diabetic NKO mice excreted 32% more urinary sodium compared with diabetic wild-type or CKO mice. Diabetic NKO mice also exhibited 55% less renal epithelial sodium channel cleavage (a marker of channel activity), 55% less renal IL-1ß, 53% less renal TNF-α, and 53% less albuminuria than diabetic wild-type mice. This protective phenotype was not associated with changes in renal angiotensin II levels. Further, we present evidence that the anti-inflammatory tetrapeptide N-acetyl-seryl-asparyl-lysyl-proline (AcSDKP), an ACE N-domain-specific substrate that accumulates in the urine of NKO mice, mediates the beneficial effects observed in the NKO. CONCLUSIONS: These data indicate that increasing AcSDKP by blocking the ACE N-domain facilitates sodium excretion and ameliorates diabetic kidney disease independent of intrarenal angiotensin II regulation.


Assuntos
Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Peptidil Dipeptidase A/química , Peptidil Dipeptidase A/deficiência , Substituição de Aminoácidos , Angiotensina II/metabolismo , Animais , Domínio Catalítico/genética , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Nefropatias Diabéticas/genética , Canais Epiteliais de Sódio/metabolismo , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Interleucina-1beta/metabolismo , Rim/metabolismo , Rim/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutagênese Sítio-Dirigida , Natriurese/genética , Natriurese/fisiologia , Oligopeptídeos/antagonistas & inibidores , Oligopeptídeos/metabolismo , Peptidil Dipeptidase A/genética , Domínios Proteicos , Sistema Renina-Angiotensina/fisiologia
11.
Molecules ; 24(17)2019 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-31484401

RESUMO

For the full development and utilization of Sophora tonkinensis Gagnep., this study was primarily intended to established a simple and efficient approach for the preparative purification of total flavonoids from S. tonkinensis by macroporous resin column chromatography (MRCC). The adsorption and desorption characteristics of the total flavonoids on ten macroporous resins were first studied, and AB-8 resin was chosen as the most suitable, and the adsorption data were best fitted to the pseudo-second-order kinetics model and Langmuir isotherm model. Furthermore, the technological parameters for the purification of the total flavonoids were optimized using column chromatography. After a sample one-step purification procedure, the content of the total flavonoids increased by about 4.76-fold from 12.14% to 57.82%, with a recovery yield of 84.93%. In addition, the comparative analysis of the flavonoid extracts before and after purification was performed by high-performance liquid chromatography coupled with photodiode-array detection (HPLC-PAD). The results showed that the contents of six major flavonoids in the purified product were all higher than before the purification. Therefore, the AB-8 MRCC established in this work was a promising method for the industrial-scale purification of the total flavonoids from S. tonkinensis.


Assuntos
Flavonoides/química , Extratos Vegetais/química , Resinas Vegetais/química , Sophora/química , Cromatografia Líquida de Alta Pressão
12.
Molecules ; 24(13)2019 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-31248058

RESUMO

The objective of this study was to develop an ultrasonic-assisted procedure for the extraction of total phenolics from Citrus aurantium L. blossoms (CAB) and evaluate the free radical scavenging activity and anti-HMG-CoA reductase activity of the total phenolics. In this work, a Box- Behnken design based on single-factor experiments was used to explore the optimum extraction process. Under the optimum conditions (extraction solvent 70.31% ethanol, extraction temperature 61.94 °C, extraction time 51.73 min, and liquid-to-solid ratio 35.63 mL/g), the extraction yield of total phenolics was 95.84 mg gallic acid equivalents (GAE)/g dry matter (DM), which was highly consistent with the theoretical value (96.12 mg GAE/g DM). The higher contents of total phenolics and five main phenolic compounds obtained from the optimized ultrasonic-assisted extraction (UAE) proved its efficiency when compared with conventional heat reflux extraction (HRE). The total phenolic extract showed excellent free radical scavenging properties against 1,1-diphenyl-2-picrylhydrazyl radical (DPPH·), 2,2'-azino-bis-(3-ethylbenzthiazoline-6-sulphonic acid) radical (ABTS+·), hydroxyl radical (·OH) and superoxide anion radical (·O2-), with IC50 values of 197.007, 83.878, 218.643, and 158.885 µg/mL, respectively; the extracts also showed good inhibition of ß-hydroxy-ß-methylglutaryl-CoA reductase (HMG-CoA reductase) activity, with an IC50 value of 117.165 µg/mL. Total phenolics from CAB could be a potential source of natural free radical scavenger and HMG-CoA reductase inhibitor.


Assuntos
Citrus/química , Sequestradores de Radicais Livres/química , Sequestradores de Radicais Livres/farmacologia , Inibidores de Hidroximetilglutaril-CoA Redutases/química , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Fenóis/química , Fenóis/farmacologia , Análise de Variância , Cromatografia Líquida de Alta Pressão , Sequestradores de Radicais Livres/isolamento & purificação , Inibidores de Hidroximetilglutaril-CoA Redutases/isolamento & purificação , Extração Líquido-Líquido , Fenóis/isolamento & purificação , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , Ondas Ultrassônicas
13.
Nanomedicine ; 14(3): 651-659, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29331387

RESUMO

Tumor-associated macrophages (TAMs) and angiogenesis are increasingly considered as the pivotal factors that affect tumor progress. Herein, we developed the paclitaxel (PTX)-loaded nanoparticles (NP/PTX) and decorated it with an innovative peptide YI (YINP/PTX) for simultaneously targeting delivery of drug to TAMs and angiogenesis. We demonstrated that the modification of YI peptide significantly enhanced the internalization of nanoparticles by cells and accumulation of nanoparticles in tumor tissues, but down regulated the distribution of them in normal tissues especially the liver. We also made a confirmation that the YI peptide decorated nanoparticles had an excellent co-localization with TAMs and angiogenesis in vivo. Finally, in the HT-26 colorectal tumor-bearing mice, a pharmacodynamic evaluation was performed and results showed that the YINP/PTX was more effective than other PTX formulations in anti-tumor growth. These results together suggested that the prepared nanoparticles are promising in targeting delivery of chemotherapeutics to tumor microenvironment for enhancing tumor therapy effect.


Assuntos
Neoplasias do Colo/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Macrófagos/patologia , Nanopartículas/administração & dosagem , Neovascularização Patológica , Paclitaxel/farmacologia , Fragmentos de Peptídeos/química , Animais , Anexina A1/química , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Neoplasias do Colo/irrigação sanguínea , Neoplasias do Colo/patologia , Humanos , Camundongos , Camundongos Nus , Nanopartículas/química , Paclitaxel/administração & dosagem , Paclitaxel/química , Células Tumorais Cultivadas , Microambiente Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Food Chem X ; 22: 101500, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38855093

RESUMO

This study aimed to valorize pawpaw (Carica papaya L.) leaves as a rich source of polyphenols through the application of ionic liquid-based microwave-assisted extraction (ILMAE). Initially, the ILMAE process was optimized using response surface methodology (RSM), resulting in a total polyphenols yield of 27.84 ± 0.33 mg GAE/g DW under the optimal conditions: [BMIM]Br concentration of 0.57 mol/L, extraction time of 14 min, microwave power of 460 W, extraction temperature of 77 °C, solvent-to-material ratio of 30 mL/g, and three extraction cycles. Compared to conventional methods such as maceration extraction (ME), heat reflux extraction (HRE), and microwave-assisted extraction (MAE), the ILMAE method exhibited a significantly higher PLTP yield. Furthermore, the PLTP extracts demonstrated strong antioxidant activity against DPPH• and ABTS+• radicals, as well as a significant inhibitory effect on α-glucosidase activity. This work demonstrates that ILMAE is a green and efficient strategy for the valorization of pawpaw leaves.

15.
Cancers (Basel) ; 16(10)2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38792006

RESUMO

Lactococcus lactis subsp. cremoris C60 is a probiotic strain of lactic acid bacteria (LAB) which induces various immune modifications in myeloid lineage cells. These modifications subsequently regulate T cell function, resulting in enhanced immunity both locally and systemically. Here, we report that C60 suppresses tumor growth by enhancing macrophage function via metabolic alterations, thereby increasing adenosine triphosphate (ATP) production in a murine melanoma model. Intragastric (i.g.) administration of C60 significantly reduced tumor volume compared to saline administration in mice. The anti-tumor function of intratumor (IT) macrophage was upregulated in mice administered with C60, as evidenced by an increased inflammatory phenotype (M1) rather than an anti-inflammatory/reparative (M2) phenotype, along with enhanced antigen-presenting ability, resulting in increased tumor antigen-specific CD8+ T cells. Through this functional modification, we identified that C60 establishes a glycolysis-dominant metabolism, rather than fatty acid oxidation (FAO), in IT macrophages, leading to increased intracellular ATP levels. To address the question of why orally supplemented C60 exhibits functions in distal places, we found a possibility that bacterial cell wall components, which could be distributed throughout the body from the gut, may induce stimulatory signals in peripheral macrophages via Toll-like receptors (TLRs) signaling activation. Thus, C60 strengthens macrophage anti-tumor immunity by promoting a predominant metabolic shift towards glycolysis upon TLR-mediated stimulation, thereby increasing substantial energy production.

16.
Front Immunol ; 15: 1335975, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38605963

RESUMO

Lactic acid bacteria (LAB) possess the ability to argument T cell activity through functional modification of antigen presenting cells (APCs), such as dendritic cells (DCs) and macrophages. Nevertheless, the precise mechanism underlying LAB-induced enhancement of antigen presentation in APCs remains incompletely understood. To address this question, we investigated the detailed mechanism underlying the enhancement of major histocompatibility complex (MHC) class I-restricted antigen presentation in DCs using a probiotic strain known as Lactococcus lactis subsp. Cremoris C60. We found that Heat-killed-C60 (HK-C60) facilitated the processing and presentation of ovalbumin (OVA) peptide antigen OVA257-264 (SIINFEKL) via H-2Kb in bone marrow-derived dendritic cells (BMDCs), leading to increased generation of effector CD8+ T cells both in vitro and in vivo. We also revealed that HK-C60 stimulation augmented the activity of 20S immunoproteasome (20SI) in BMDCs, thereby enhancing the MHC class I-restricted antigen presentation machinery. Furthermore, we assessed the impact of HK-C60 on CD8+ T cell activation in an OVA-expressing B16-F10 murine melanoma model. Oral administration of HK-C60 significantly attenuated tumor growth compared to control treatment. Enhanced Ag processing and presentation machineries in DCs from both Peyer's Patches (PPs) and lymph nodes (LNs) resulted in an increased tumor antigen specific CD8+ T cells. These findings shed new light on the role of LAB in MHC class-I restricted antigen presentation and activation of CD8+ T cells through functional modification of DCs.


Assuntos
Apresentação de Antígeno , Células Dendríticas , Animais , Camundongos , Antígenos de Histocompatibilidade Classe I , Linfócitos T CD8-Positivos , Antígenos , Ovalbumina , Complexo Principal de Histocompatibilidade
17.
Pathogens ; 13(5)2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38787253

RESUMO

Programmed death ligand 1 (PD-L1) is a co-inhibitory molecule expressed on the surface of various cell types and known for its suppressive effect on T cells through its interaction with PD-1. Neutrophils also express PD-L1, and its expression is elevated in specific situations; however, the immunobiological role of PD-L1+ neutrophils has not been fully characterized. Here, we report that PD-L1-expressing neutrophils increased in methicillin-resistant Staphylococcus aureus (MRSA) infection are highly functional in bacterial elimination and supporting inflammatory resolution. The frequency of PD-L1+ neutrophils was dramatically increased in MRSA-infected mice, and this population exhibited enhanced activity in bacterial elimination compared to PD-L1- neutrophils. The administration of PD-L1 monoclonal antibody did not impair PD-L1+ neutrophil function, suggesting that PD-L1 expression itself does not influence neutrophil activity. However, PD-1/PD-L1 blockade significantly delayed liver inflammation resolution in MRSA-infected mice, as indicated by their increased plasma alanine transaminase (ALT) levels and frequencies of inflammatory leukocytes in the liver, implying that neutrophil PD-L1 suppresses the inflammatory response of these cells during the acute phase of MRSA infection. Our results reveal that elevated PD-L1 expression can be a marker for the enhanced anti-bacterial function of neutrophils. Moreover, PD-L1+ neutrophils are an indispensable population attenuating inflammatory leukocyte activities, assisting in a smooth transition into the resolution phase in MRSA infection.

18.
Biosci Microbiota Food Health ; 41(4): 185-194, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36258765

RESUMO

Creatine is an organic compound which is utilized in biological activities, especially for adenosine triphosphate (ATP) production in the phosphocreatine system. This is a well-known biochemical reaction that is generally recognized as being mainly driven in specific parts of the body, such as the skeletal muscle and brain. However, our report shows a novel aspect of creatine utilization and ATP synthesis in innate immune cells. Creatine supplementation enhanced immune responses in neutrophils, such as cytokine production, reactive oxygen species (ROS) production, phagocytosis, and NETosis, which were characterized as antibacterial activities. This creatine-induced functional upregulation of neutrophils provided a protective effect in a murine bacterial sepsis model. The mortality rate in mice challenged with Escherichia coli K-12 was decreased by creatine supplementation compared with the control treatment. Corresponding to this decrease in mortality, we found that creatine supplementation decreased blood pro-inflammatory cytokine levels and bacterial colonization in organs. Creatine supplementation significantly increased the cellular ATP level in neutrophils compared with the control treatment. This ATP increase was due to the phosphocreatine system in the creatine-treated neutrophils. In addition, extracellular creatine was used in this ATP synthesis, as inhibition of creatine uptake abolished the increase in ATP in the creatine-treated neutrophils. Thus, creatine is an effective nutrient for modifying the immunological function of neutrophils, which contributes to enhancement of antibacterial immunity.

19.
Cancers (Basel) ; 14(21)2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36358691

RESUMO

Head and neck squamous cell carcinoma (HNSCC) is a highly aggressive disease with poor prognosis, which is mainly due to drug resistance. The biology determining the response to chemo-radiotherapy in HNSCC is poorly understood. Using clinical samples, we found that miR124-3p and miR766-3p are overexpressed in chemo-radiotherapy-resistant (non-responder) HNSCC, as compared to responder tumors. Our study shows that inhibition of miR124-3p and miR766-3p enhances the sensitivity of HNSCC cell lines, CAL27 and FaDu, to 5-fluorouracil and cisplatin (FP) chemotherapy and radiotherapy. In contrast, overexpression of miR766-3p and miR124-3p confers a resistance phenotype in HNSCC cells. The upregulation of miR124-3p and miR766-3p is associated with increased HNSCC cell invasion and migration. In a xenograft mouse model, inhibition of miR124-3p and miR766-3p enhanced the efficacy of chemo-radiotherapy with reduced growth of resistant HNSCC. For the first time, we identified that miR124-3p and miR766-3p attenuate expression of CREBRF and NR3C2, respectively, in HNSCC, which promotes aggressive tumor behavior by inducing the signaling axes CREB3/ATG5 and ß-catenin/c-Myc. Since miR124-3p and miR766-3p affect complementary pathways, combined inhibition of these two miRNAs shows an additive effect on sensitizing cancer cells to chemo-radiotherapy. In conclusion, our study demonstrated a novel miR124-3p- and miR766-3p-based biological mechanism governing treatment-resistant HNSCC, which can be targeted to improve clinical outcomes in HNSCC.

20.
Front Immunol ; 12: 744300, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34777356

RESUMO

As first responder cells in host defense, neutrophils must be carefully regulated to prevent collateral tissue injury. However, the intracellular events that titrate the neutrophil's response to inflammatory stimuli remain poorly understood. As a molecular switch, Ras activity is tightly regulated by Ras GTPase activating proteins (RasGAP) to maintain cellular active-inactive states. Here, we show that RASAL3, a RasGAP, is highly expressed in neutrophils and that its expression is upregulated by exogenous stimuli in neutrophils. RASAL3 deficiency triggers augmented neutrophil responses and enhanced immune activation in acute inflammatory conditions. Consequently, mice lacking RASAL3 (RASAL3-KO) demonstrate accelerated mortality in a septic shock model via induction of severe organ damage and hyperinflammatory response. The excessive neutrophilic hyperinflammation and increased mortality were recapitulated in a mouse model of sickle cell disease, which we found to have low neutrophil RASAL3 expression upon LPS activation. Thus, RASAL3 functions as a RasGAP that negatively regulates the cellular activity of neutrophils to modulate the inflammatory response. These results demonstrate that RASAL3 could serve as a therapeutic target to regulate excessive inflammation in sepsis and many inflammatory disease states.


Assuntos
Inflamação/imunologia , Neutrófilos/imunologia , Proteínas Ativadoras de ras GTPase/imunologia , Animais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa