Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Invest New Drugs ; 41(1): 13-24, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36331675

RESUMO

Neratinib, an irreversible pan-HER tyrosine kinase inhibitor, has been approved for the treatment of HER2-positive (HER2+) early-stage and brain metastatic breast cancer. Thus far, the pharmacology effects and pharmacodynamics of neratinib have been well studied. However, the disposition of neratinib and its influencing factors in vivo remain unclear. P-glycoprotein (P-gp), one of the most extensively studied transporters, substantially restricts penetration of drugs into the body or deeper compartments (i.e., blood-brain barrier, BBB), regarding drug resistance and drug-drug interactions. Thereby, the aim of this study was to investigate the influence of verapamil (a P-gp inhibitor) on the pharmacokinetics of neratinib in rats. Here, we have established a high specific, selective and sensitive ultra-performance liquid chromatography-tandem mass spectrometric (UPLC-MS/MS) method to quantify plasma concentrations of neratinib in rats. Pharmacokinetic results showed that verapamil significantly increased the system exposure of neratinib, as Cmax increased by 2.09-fold and AUC0-t increased by 1.64-fold, respectively. Additionally, the in vitro transport of neratinib was evaluated using Madin-Darby canine kidney II (MDCK II) and human MDR1 gene overexpressed MDCK (MDCK-MDR1) cell line models. As a result, the net flux ratio was over than 2 and decreased over 50% by verapamil, suggesting that neratinib was a substrate of P-gp. Hence, our findings have highlighted the important role of P-gp in the system exposure of neratinib in vivo, and drug-drug interaction should be considered when coadministration of P-gp inhibitors with neratinib. These findings may support the further clinical development and application of neratinib.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Humanos , Ratos , Animais , Cães , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Verapamil/farmacologia , Cromatografia Líquida , Espectrometria de Massas em Tandem , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo
2.
Cell Commun Signal ; 20(1): 175, 2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36348350

RESUMO

BACKGROUND: Spermine is frequently elevated in tumor tissues and body fluids of cancer patients and is critical for cancer cell proliferation, migration and invasion. However, the immune functions of spermine in hepatocellular carcinoma progression remains unknown. In the present study, we aimed to elucidate immunosuppressive role of spermine in hepatocellular carcinoma and to explore the underlying mechanism. METHODS: Whole-blood spermine concentration was measured using HPLC. Human primary HCC tissues were collected to examine the expression of CaSR, p-Akt, ß-catenin, STT3A, PD-L1, and CD8. Mouse model of tumorigenesis and lung metastasis were established to evaluate the effects of spermine on hepatocellular carcinoma. Western blotting, immunofluorescence, real time PCR, digital Ca2+ imaging, and chromatin immunoprecipitation assay were used to investigate the underlying mechanisms by which spermine regulates PD-L1 expression and glycosylation in hepatocellular carcinoma cells. RESULTS: Blood spermine concentration in the HCC patient group was significantly higher than that in the normal population group. Spermine could facilitate tumor progression through inducing PD-L1 expression and decreasing the CD8+ T cell infiltration in HCC. Mechanistically, spermine activates calcium-sensing receptor (CaSR) to trigger Ca2+ entry and thereby promote Akt-dependent ß-catenin stabilization and nuclear translocation. Nuclear ß-catenin induced by spermine then activates transcriptional expression of PD-L1 and N-glycosyltransferase STT3A, while STT3A in turn increases the stability of PD-L1 through inducing PD-L1 protein N-glycosylation in HCC cells. CONCLUSIONS: This study reveals the crucial function of spermine in establishing immune privilege by increasing the expression and N-glycosylation of PD-L1, providing a potential strategy for the treatment of hepatocellular carcinoma. Video Abstract.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Camundongos , Animais , Humanos , Carcinoma Hepatocelular/patologia , Antígeno B7-H1/metabolismo , beta Catenina , Neoplasias Hepáticas/patologia , Espermina/farmacologia , Proteínas Proto-Oncogênicas c-akt , Linhagem Celular Tumoral , Microambiente Tumoral
3.
Chem Biol Drug Des ; 102(5): 1014-1023, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37487659

RESUMO

Human sulfotransferases 1A3 (SULT1A3) has received particular interest, due to their functions of catalyzing the sulfonation of numerous phenolic substrates, including bioactive endogenous molecules and therapeutic agents. However, the regulation of SULT1A3 expression and the underlying mechanism remain unclear. Here, we aimed to investigate the regulation effects of bile acid-activated farnesoid X receptor (FXR) on SULT1A3 expression, and to shed light on the mechanism thereof. Our results demonstrated that FXR agonists (CDCA and GW4064) significantly inhibit the expression of SULT1A3 at mRNA and protein levels. In addition, overexpression of FXR led to decrease in SULT1A3 expression and knockdown of FXR significantly induced the expression of SULT1A3 in protein and mRNA levels, confirming that FXR expression manifestly showed negative regulatory effect on basal SULT1A3 expression. Furthermore, a combination of luciferase reporter gene and CHIP assays showed that FXR repressed SULT1A3 transcription through direct binding to the region at base pair positions -664 to -654. In conclusion, this study for the first time confirmed FXR was a negative transcriptional regulator of human SULT1A3 enzyme.


Assuntos
Ácido Quenodesoxicólico , Receptores Citoplasmáticos e Nucleares , Humanos , Ácido Quenodesoxicólico/farmacologia , Ácido Quenodesoxicólico/metabolismo , Regiões Promotoras Genéticas , Receptores Citoplasmáticos e Nucleares/genética , RNA Mensageiro/metabolismo , Sulfotransferases/genética , Sulfotransferases/metabolismo
4.
Biochem Pharmacol ; 208: 115378, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36513141

RESUMO

Understanding the mechanisms regulating PD-L1 expression in hepatocellular carcinoma (HCC) is important to improve the response rate to PD-1/PD-L1 blockade therapy. Here, we show that DKK1 expression is positively associated with PD-L1 expression and inversely correlated with CD8+ T cell infiltration in human HCC tumor specimens. In a subcutaneous xenograft tumor model, overexpression of DKK1 significantly promotes tumor growth, tumoral PD-L1 expression, but reduces tumoral CD8+ T cell infiltration; whereas knockdown of DKK1 has opposite effects. Moreover, enforced expression of DKK1 dramatically promotes PD-L1 expression, Akt activation, ß-catenin phosphorylation and total protein expression in HCC cells. By contrast, knockdown of DKK1 inhibits all, relative to controls. In addition, CKAP4 depletion, Akt inhibition, or ß-catenin depletion remarkably abrogates DKK1 overexpression-induced transcriptional expression of PD-L1 in HCC cells. Reconstituted expression of the active Akt1 largely increased PD-L1 transcriptional expression in HCC cells. Similarly, expression of WT ß-catenin, but not the phosphorylation-defective ß-catenin S552A mutant, significantly promotes PD-L1 expression. Correlation analysis of human HCC tumor specimens further revealed that DKK1 and PD-L1 expression were positively correlated with p-ß-catenin expression. Together, our findings revealed that DKK1 promotes PD-L1 expression through the activation of Akt/ß-catenin signaling, providing a potential strategy to enhance the clinical efficacy of PD-1/PD-L1 blockade therapy in HCC patients.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , beta Catenina/metabolismo , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Neoplasias Hepáticas/metabolismo , Receptor de Morte Celular Programada 1 , Proteínas Proto-Oncogênicas c-akt , Evasão Tumoral
5.
Phytomedicine ; 112: 154715, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36821999

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is a leading cause of cancer-associated mortality in the world. However, the anticancer effects of aucubin against HCC have yet to be reported. Cisplatin often decreased CD8+ tumor-infiltrating lymphocytes in the tumor microenvironment through increasing programmed death-ligand 1 (PD-L1) expression, which seriously affected the prognostic effect of cisplatin in the treatment of patients with HCC. Therefore, it is necessary to identify a novel therapeutic avenue to increase the sensitivity of cisplatin against HCC. PURPOSE: This study aims to evaluate the anti-tumor effect of aucubin on HCC, and also to reveal the synergistic effects and mechanism of aucubin and cisplatin against HCC. STUDY DESIGN AND METHODS: An H22 xenograft mouse model was established for the in vivo experiments. Cancer cell proliferation was detected by MTT assay. RT-qPCR was performed to analyze CD274 mRNA expression in vitro. Western blotting was employed to determine the expression levels of the PD-L1, p-Akt, Akt, p-ß-catenin, and ß-catenin in vitro. Immunofluorescence was carried out to examine ß-catenin nuclear accumulation in HCC cells. Immunohistochemistry was used to detect tumoral PD-L1 and CD8α expression in xenograft mouse model. RESULTS: Aucubin inhibits tumor growth in a xenograft HCC mouse model, but did not affect HCC cell viability in vitro. Aucubin treatment significantly inhibited PD-L1 expression through inactivating Akt/ß-catenin signaling pathway in HCC cells. Overexpression of PD-L1 dramatically reversed aucubin-mediated tumoral CD8+ T cell infiltration and alleviated the antitumor activity of aucubin in xenograft mouse model. Moreover, Cisplatin could induce the expression of PD-L1 through the activation of the Akt/ß-catenin signaling pathway in HCC cells, which can be blocked by aucubin in vitro. In xenograft mouse model, cisplatin treatment induced PD-L1 expression and alleviated the infiltration of CD8+ T lymphocytes in the tumor microenvironment. Aucubin not only abrogated cisplatin-induced PD-L1 expression but also enhanced the antitumor efficacy of cisplatin in a mouse xenograft model of HCC. CONCLUSION: Aucubin exerts antitumor activity against HCC and also enhances the antitumor activity of cisplatin by suppressing the Akt/ß-catenin/PD-L1 axis.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Animais , Camundongos , Carcinoma Hepatocelular/metabolismo , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Antígeno B7-H1/metabolismo , Neoplasias Hepáticas/metabolismo , beta Catenina/metabolismo , Proteínas Proto-Oncogênicas c-akt , Linhagem Celular Tumoral , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa