RESUMO
Intermediate volatility organic compounds (IVOCs) are important precursors to secondary organic aerosols (SOAs), but they are often neglected in studies concerning SOA formation. This study addresses the significant issue of IVOCs emissions in the Qinghai-Tibetan plateau (QTP), where solid fuels are extensively used under incomplete combustion conditions for residential heating and cooking. Our field measurement data revealed an emission factor of the total IVOCs (EFIVOCs) ranging from 1.56 ± 0.03 to 9.97 ± 3.22 g/kg from various combustion scenarios in QTP. The markedly higher EFIVOCs in QTP than in plain regions can be attributed to oxygen-deficient conditions. IVOCs were dominated by gaseous phase emissions, and the primary contributors of gaseous and particulate phase IVOCs are the unresolved complex mixture and alkanes, respectively. Total IVOCs emissions during the heating and nonheating seasons in QTP were estimated to be 31.7 ± 13.8 and 6.87 ± 0.45 Gg, respectively. The estimated SOA production resulting from combined emissions of IVOCs and VOCs is nearly five times higher than that derived from VOCs alone. Results from this study emphasized the pivotal role of IVOCs emissions in air pollution and provided a foundation for compiling emission inventories related to solid fuel combustion and developing pollution prevention strategies.
Assuntos
Aerossóis , Poluentes Atmosféricos , Carvão Mineral , Compostos Orgânicos Voláteis , Compostos Orgânicos Voláteis/análise , Poluentes Atmosféricos/análise , China , Animais , Tibet , Monitoramento AmbientalRESUMO
Activating surface lattice oxygen (Olatt) through the modulation of metal-oxygen bond strength has proven to be an effective route for facilitating the catalytic degradation of volatile organic compounds (VOCs). Although this strategy has been implemented via the construction of the TM1-O-TM2 (TM represents a transition metal) structure in various reactions, the underlying principle requires exploration when using different TMs. Herein, the Cu2+-O-Fe3+ structure was created by developing CuO-Fe3O4 composites with enhanced interfacial effect, which exhibited superior catalytic activity to their counterparts, with T90 (the temperature of toluene conversion reaching 90%) decreasing by approximately 50 °C. Structural analyses and theoretical calculations demonstrated that the active Cu2+-O-Fe3+ sites at the CuO-Fe3O4 interface improved low-temperature reducibility and oxygen species activity. Particularly, X-ray absorption fine structure spectroscopy revealed the contraction and expansion of Cu-O and Fe-O bonds, respectively, which were responsible for the activation of the surface Olatt. A mechanistic study revealed that toluene can be oxidized by rapid dehydrogenation of methyl assisted by the highly active surface Olatt and subsequently undergo ring-opening and deep mineralization into CO2 following the Mars-van Krevelen mechanism. This study provided a novel strategy to explore interface-enhanced TM catalysts for efficient surface Olatt activation and VOCs abatement.
Assuntos
Cobre , Oxigênio , ToluenoRESUMO
Methoxyphenols and nitroaromatic compounds (NACs) have strong atmospheric radiative forcing effects and adverse effects on human health. They are emitted from the incomplete combustion of solid fuels and are secondarily formed through photochemical reactions. Here, an on-site study was conducted to determine the primary emission and secondary formation of particulate phase products from a variety of solid fuels through a potential aerosol mass-oxidation flow reactor. Emission factors for total quantified methoxyphenols and NACs (i.e., EF∑Methoxyphenols and EF∑NACs) varied by 2 orders of magnitude among different fuels, which were greatly influenced by volatile matter, incomplete combustibility, flame intensity, and combustion temperature. Guaiacol and 4-nitro-2-vinylphenol were used as tracers for primary organic aerosol due to the low aged-to-fresh ratios (0.21-0.97), while 4-methyl-guaiacol, 4-ethyl-guaiacol, eugenol, 4-methyl-syringol, isoeugenol, acetovanillone, syringaldehyde, homovanillin acid, vanillin acid, and syringic acid were identified as secondary organic aerosol (SOA) (aged-to-fresh ratios between 1.90 and 4.20). During simulated aging, the -CHO group reacted with the hydroxyl radical (â¢OH) to form the -COOH group, but there was no correlation between syringol and 4-nitrosyringol, implying that â¢OH is the main reactant rather than the nitriate radical (â¢NO3) in the atmospheric aging processes of methoxyphenols. Aging caused substantially different emission profiles due to variable photochemical reaction properties. The fresh EFs for guaiacol emitted from the biomass burning ranged from 3.80 ± 0.44 to 26.2 ± 5.40 mg·kg-1, which were much higher than those in coal combustions (of 0.03 ± 0.01 to 1.42 ± 0.28 mg·kg-1). However, the aged EFs (EFaged) for guaiacol was 1.02 ± 0.06 to 1.61 ± 0.11 mg·kg-1 in most biomass combustions, which were comparable with those of the bituminous chunk (1.20 ± 0.16 mg·kg-1). Therefore, guaiacol, a traditional biomass marker, is not an ideal tracer for aged PM2.5 emitted from biomass burning. Indeed, the syringol/guaiacol and syringol/4-nitrosyringol ratios were found to be more suitable and efficient to be used in source characterization.
Assuntos
Envelhecimento , Pirogalol , Humanos , Idoso , Biomassa , Carvão MineralRESUMO
Rapid industrialization and urbanization in developing countries has led to an increase in air pollution, along a similar trajectory to that previously experienced by the developed nations. In China, particulate pollution is a serious environmental problem that is influencing air quality, regional and global climates, and human health. In response to the extremely severe and persistent haze pollution experienced by about 800 million people during the first quarter of 2013 (refs 4, 5), the Chinese State Council announced its aim to reduce concentrations of PM2.5 (particulate matter with an aerodynamic diameter less than 2.5 micrometres) by up to 25 per cent relative to 2012 levels by 2017 (ref. 6). Such efforts however require elucidation of the factors governing the abundance and composition of PM2.5, which remain poorly constrained in China. Here we combine a comprehensive set of novel and state-of-the-art offline analytical approaches and statistical techniques to investigate the chemical nature and sources of particulate matter at urban locations in Beijing, Shanghai, Guangzhou and Xi'an during January 2013. We find that the severe haze pollution event was driven to a large extent by secondary aerosol formation, which contributed 30-77 per cent and 44-71 per cent (average for all four cities) of PM2.5 and of organic aerosol, respectively. On average, the contribution of secondary organic aerosol (SOA) and secondary inorganic aerosol (SIA) are found to be of similar importance (SOA/SIA ratios range from 0.6 to 1.4). Our results suggest that, in addition to mitigating primary particulate emissions, reducing the emissions of secondary aerosol precursors from, for example, fossil fuel combustion and biomass burning is likely to be important for controlling China's PM2.5 levels and for reducing the environmental, economic and health impacts resulting from particulate pollution.
Assuntos
Aerossóis/análise , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/química , Poluição do Ar/análise , Material Particulado/análise , Material Particulado/química , Aerossóis/química , Biomassa , China , Cidades , Monitoramento Ambiental , Combustíveis Fósseis , Humanos , Compostos Orgânicos/análise , Compostos Orgânicos/química , Saúde Pública , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/químicaRESUMO
Direct evidence about associations between fine particles (PM2.5) components and the corresponding PM2.5 bioreactivity at the individual level is limited. We conducted a panel study with repeated personal measurements involving 56 healthy residents in Hong Kong. Fractional exhaled nitric oxide (FeNO) levels were measured from these subjects. Out of 56 subjects, 27 (48.2%) participated in concurrent outdoor, indoor, and personal PM2.5 monitoring. Organic carbon (OC), elemental carbon (EC), particle bound-polycyclic aromatic hydrocarbons (PAHs), and phthalates were analyzed. Alteration in cell viability, lactic dehydrogenase (LDH), interleukin-6 (IL-6), and 8-isoprostane by 50 µg/mL PM2.5 extracts was determined in A549 cells in vitro. Moderate heterogeneities were shown in PM2.5 exposures and the corresponding PM2.5 bioreactivity across different sample types. Associations between the analyzed components and PM2.5 bioreactivity were assessed using the multiple regression models. Toxicological results revealed that indoor and personal exposure to OC as well as PAH compounds and their derivatives (e.g., Alkyl-PAHs, Oxy-PAHs) induced cell viability reduction and increase in levels of LDH, IL-6, and 8-isoprostane. Overall, OC in personal exposure played a dominant role in PM2.5-induced bioreactivity. Subsequently, we examined the associations of FeNO with IL-6 and 8-isoprostane levels using mixed-effects models. The results showed that per interquartile change in IL-6 and 8-isoprostane were associated with a 6.4% (p < 0.01) and 11.1% (p < 0.01) increase in FeNO levels, respectively. Our study explored the toxicological properties of chemical components in PM2.5 exposure, which suggested that residential indoors and personal OC and PAHs should be of great concern for human health. These findings indicated that further studies in inflammation and oxidative stress-related illnesses due to particle exposure would benefit from the assessment of in vitro PM2.5 bioreactivity.
Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Poluição do Ar em Ambientes Fechados/análise , Carbono/análise , Monitoramento Ambiental , Hong Kong , Humanos , Tamanho da Partícula , Material Particulado/análise , Material Particulado/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/análiseRESUMO
A highly efficient and environmentally-friendly oxidation process is always desirable for air purification. This study reported a novel carbon quantum dots (CQDs)/ZnFe2O4 composite photocatalyst for the first time through a facile hydrothermal process. The CQDs/ZnFe2O4 (15 vol %) composite demonstrates stronger transient photocurrent response, approximately 8 times higher than that of ZnFe2O4, indicating superior transfer efficiency of photogenerated electrons and separation efficiency of photogenerated electron-hole pairs. Compared with pristine ZnFe2O4 nanoparticles, CQDs/ZnFe2O4 displayed enhanced photocatalytic activities on gaseous NOx removal and high selectivity for nitrate formation under visible light (λ > 420 nm) irradiation. Electron spin resonance analysis and a series of radical-trapping experiments showed that the reactive species contributing to NO elimination were ·O2- and ·OH radicals. The possible mechanisms were proposed regarding how CQDs improve the photocatalytic performance of ZnFe2O4. The CQDs are believed to act as an electron reservoir and transporter as well as a powerful energy-transfer component during the photocatalysis processes over CQDs/ZnFe2O4 samples. Furthermore, the toxicity assessment authenticated good biocompatibility and low cytotoxity of CQDs/ZnFe2O4. The results of this study indicate that CQDs/ZnFe2O4 is a promising photocatalyst for air purification.
Assuntos
Carbono , Pontos Quânticos , Catálise , Luz , OxirreduçãoRESUMO
PM2.5 (particulate matter with an aerodynamic diameter <2.5 microm) samples (n = 58) collected every sixth day in Xi'an, China, from 5 July 2008 to 27 June 2009 are analyzed for levoglucosan (1,6-anhydro-beta-D-glucopyranose) to evaluate the impacts of biomass combustion on ambient concentrations. Twenty-four-hour levoglucosan concentrations displayed clear summer minima and winter maxima that ranged from 46 to 1889 ng m(-3), with an average of 428 +/- 399 ng m(-3). Besides agricultural burning, biomass/biofuel combustion for household heating with straws and branches appears to be of regional importance during the heating season in northwestern China. Good correlations (0.70 < R < 0.91) were found between levoglucosan relative to water- soluble K+, Cl-, organic carbon (OC), elemental carbon (EC), and glyoxal. The highest levoglucosan/OC ratio of2.3% wasfound in winter, followed by autumn (1.5%). Biomass burning contributed to 5.1-43.8% of OC (with an average of 17.6 +/- 8.4%).
Assuntos
Poluentes Atmosféricos/química , Monitoramento Ambiental/métodos , Glucose/análogos & derivados , Material Particulado/química , China , Incêndios , Glucose/química , Tamanho da Partícula , Estações do AnoRESUMO
Black carbon (BC) and brown carbon (BrC) over the high-altitude Tibetan Plateau (TP) can significantly influence regional and global climate change as well as glacial melting. However, obtaining plateau-scale in situ observations is challenging due to its high altitude. By integrating reanalysis data with on-site measurements, the spatial distribution of BC and BrC can be accurately estimated using the random forest algorithm (RF). In our study, the on-site observations of BC and BrC were successively conducted at four sites from 2018 to 2021. Ground-level BC and BrC concentrations were then obtained at a spatial resolution of 0.25° × 0.25° for three periods (including Periods-1980, 2000, and 2020) using RF and multi-source data. The highest annual concentrations of BC (1363.9 ± 338.7 ng/m3) and BrC (372.1 ± 96.2 ng/m3) were observed during Period-2000. BC contributed a dominant proportion of carbonaceous aerosol, with concentrations 3-4 times higher than those of BrC across the three periods. The ratios of BrC to BC decreased from Period-1980 to Period-2020, indicating the increasing importance of BC over the TP. Spatial distributions of plateau-scale BC and BrC concentrations showed heightened levels in the southeastern TP, particularly during Period-2000. These findings significantly enhance our understanding of the spatio-temporal distribution of light-absorbing carbonaceous aerosol over the TP.
RESUMO
UNLABELLED: A pilot hazardous airborne carbonyls study was carried out in Hong Kong and the Mainland of China. Workplace air samples in 14 factories of various types of manufacturing and industrial operations were collected and analyzed for a panel of 21 carbonyl compounds. The factories can be classified into five general categories, including food processing, electroplating, textile dyeing, chemical manufacturer, and petroleum refinery. Formaldehyde was invariably the most abundant carbonyl compound among all the workplace air samples, accounting for 22.0-44.0% of the total measured amount of carbonyls on a molar basis. Acetone was also found to be an abundant carbonyl in workplace settings; among the selected industrial sectors, chemical manufacturers' workplaces had the highest percentage (an average of 42.6%) of acetone in the total amount of carbonyls measured in air. Benzaldehyde accounted for an average of 20.5% of the total amount of detected carbonyls in electroplating factories, but its contribution was minor in other industrial workplaces. Long-chain aliphatic carbonyls (C6-C10) accounted for a large portion (37.2%) of the total carbonyls in food-processing factories. Glyoxal and methylglyoxal existed at variable levels in the selected workplaces, ranging from 0.2% to 5.5%. The mixing ratio of formaldehyde ranged from 8.6 to 101.2 ppbv in the sampled workplaces. The observed amount of formaldehyde in two paint and wax manufacturers and food-processing factories exceeded the World Health Organization (WHO) air quality guideline of 81.8 ppbv. Carcinogenic risks of chronic exposure to formaldehyde and acetaldehyde by the workers were evaluated. The lifetime cancer hazard risks associated with formaldehyde exposure to male and female workers ranged from 2.01 x 10(-5) to 2.37 x 10(-4) and 2.68 x 10(-5) to 3.16 x 10(-4), respectively. Such elevated risk values suggest that the negative health impact of formaldehyde exposure represents a valid concern, and proper actions should be taken to protect workers from such risks. IMPLICATIONS: Many carbonyl species (e.g., formaldehyde, acetaldehyde, and acrolein) are air toxins and they pose public healt risks. The scope of this investigation covers 21 types of carbonyls based on samples collected from 14 different workplaces. Findings of the study will not only provide a comprehensive assessment of indoor air quality with regard to workers' healthy and safety, but also establish a theoretical foundation for future formulation of intervention strategies to reduce occupational carbonyl exposures. No similar study has been carried out either in Hong Kong or the Mainland of China.
Assuntos
Poluentes Ocupacionais do Ar/análise , Poluição do Ar em Ambientes Fechados/análise , Aldeídos/análise , Indústrias , Cetonas/análise , Exposição Ocupacional , China , Cromatografia Líquida de Alta Pressão , Monitoramento Ambiental , Feminino , Hong Kong , Humanos , MasculinoRESUMO
The use of indoor air purifier (IAP) has received growing attention as a mitigation strategy for reducing indoor air pollution, but the evidence on their cardiovascular benefits is unclear. This study aims to evaluate whether the use of IAP can reduce the adverse effects of indoor particulate matter (PM) on cardiovascular health among young healthy population. A randomized, double-blind, cross-over, IAP intervention of 38 college students was conducted. The participants were assigned into two groups to receive the true and sham IAPs for 36 h in random order. Systolic and diastolic blood pressure (SBP; DBP), blood oxygen saturation (SpO2), heart rate variability (HRV) and indoor size-fractioned particulate matter (PM) were real-time monitored throughout the intervention. We found that IAP could reduce indoor PM by 41.7-50.5 %. Using IAP was significantly associated with a reduction of 2.96 mmHg (95 % CI: -5.71, -0.20) in SBP. Increased PM was significantly associated with increased SBP (e.g., 2.17 mmHg [0.53, 3.81], 1.73 mmHg [0.32, 3.14] and 1.51 mmHg [0.28, 2.75] for an IQR increment of PM1 [16.7 µg/m3], PM2.5 [20.6 µg/m3] and PM10 [37.9 µg/m3] at lag 0-2 h, respectively) and decreased SpO2 (-0.44 % [-0.57, -0.29], -0.41 % [-0.53, -0.30] and - 0.40 % [-0.51, -0.30] for PM1, PM2.5 and PM10 at lag 0-1 h, respectively), which could last for about 2 h. Using IAPs could halve indoor PM levels, even in relatively low air pollution settings. The exposure-response relationships suggested that the benefits of IAPs on BP may only be observed when indoor PM exposure is reduced to a certain level.
Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Poluição do Ar , Humanos , Adulto Jovem , Poluição do Ar em Ambientes Fechados/análise , Frequência Cardíaca , Pressão Sanguínea , Saturação de Oxigênio , Poluição do Ar/efeitos adversos , Material Particulado/análise , Poluentes Atmosféricos/análiseRESUMO
UNLABELLED: PM2.5 in 14 of China's large cities achieves high concentrations in both winter and summer with averages > 100 microg m(-3) being common occurrences. A grand average of 15 microg m(-3) was found for all cities, with a minimum of 27 microg m(-3) measured at Qingdao during summer and a maximum of 356 microg m(-3) at Xi 'an during winter. Both primary and secondary PM2.5 are important contributors at all of the cities and during both winter and summer. While ammonium sulfate is a large contributor during both seasons, ammonium nitrate contributions are much larger during winter. Lead levels are still high in several cities, reaching an average of 1.68 microg m(-3) in Xi 'an. High correlations of lead with arsenic and sulfate concentrations indicate that much of it derives from coal combustion, rather than leaded fuels, which were phased out by calendar year 2000. Although limited fugitive dust markers were available, scaling of iron by its ratios in source profiles shows -20% of PM2.5 deriving from fugitive dust in most of the cities. Multipollutant control strategies will be needed that address incomplete combustion of coal and biomass, engine exhaust, and fugitive dust, as well as sulfur dioxide, oxides of nitrogen, and ammonia gaseous precursors for ammonium sulfate and ammonium nitrate. IMPLICATIONS: PM2.5 mass and chemical composition show large contributions from carbon, sulfate, nitrate, ammonium, and fugitive dust during winter and summer and across fourteen large cities. Multipollutant control strategies will be needed that address both primary PM2.5 emissions and gaseous precursors to attain China's recently adopted PM2.5 national air quality standards.
Assuntos
Poluentes Atmosféricos/análise , Material Particulado/análise , China , Cidades , Monitoramento Ambiental , Tamanho da Partícula , Estações do Ano , Espectrometria por Raios XRESUMO
Atmospheric black carbon (BC), primary and secondary brown carbon (BrCpri and BrCsec) are the light-absorbing carbonaceous aerosol components. The vertical changes in the BC and BrC distributions are not generally known. Here, we presented a study of the spectral light absorption properties, direct solar absorption, and potential source areas of BC and BrC at the foothill (375 m a.s.l.) and summit (2060 m a.s.l.) of Mt. Hua, China. More than tripled BC and BrC light absorption coefficient were observed at the foothill compared to the summit. The dominant carbonaceous light-absorbing was attributed to BC with the percentages of 77 % (foothill) and 79 % (summit), respectively. The light absorption coefficient and direct solar absorption of BrCpri were much higher than those of BrCsec at foothill, especially in winter. The enhancing contributions of BrCsec light absorption coefficient and direct solar absorption were observed with high RH and visibility at the summit. The light absorption properties of BC, BrCpri, and BrCsec may be attributed to the emissions, meteorological conditions, and photochemical oxidation. The inferred potential source spatial distributions of BC and BrCpri showed different patterns at the foothill and summit. The results underlined the primary emission effects (including BC and BrCpri) at the foothill and the importance of BrCsec at the summit, respectively.
Assuntos
Poluentes Atmosféricos , Carbono , Aerossóis/análise , Poluentes Atmosféricos/análise , Carbono/análise , China , Monitoramento Ambiental/métodos , Fuligem/análiseRESUMO
Formaldehyde is a typical indoor air pollutant that has posed severely adverse effects on human health. Herein, a novel FeCo alloy nanoparticle-embedded nitrogen-doped carbon (FeCo@NC) was synthesized with the aim of tailoring the transition-metal d-band structure toward an improved formaldehyde oxidation activity for the first time. A unique core@shell metal-organic frameworks (MOFs) architecture with a Fe-based Prussian blue analogue core and Co-containing zeolite imidazole framework shell was firstly fabricated. Then, Fe and Co ion alloying was readily achieved owing to the inherent MOF porosity and interionic nonequilibrium diffusion occurring during pyrolysis. High-angle annular dark-field scanning transmission electron microscopy and X-ray absorption fine structure spectra confirm that small FeCo alloys in situ form in FeCo@NC, which exhibits a higher formaldehyde removal efficiency (93%) than the monometallic Fe-based catalyst and a remarkable CO2 selectivity (85%) at room temperature. Density functional theory calculations indicate the number of electrons transferred from the metal core to the outer carbon layer is altered by alloying Fe and Co. More importantly, a downshift in the d-band center relative to the Fermi level occurs from - 0.93 to - 1.04 eV after introducing Co, which could alleviate the adsorption of reaction intermediates and greatly improve the catalytic performance.
RESUMO
Fine particulate matter (PM2.5) has been linked to cardiopulmonary disease and systemic effects in humans. However, few studies have investigated the particle bioreactivity in Chinese megacities during haze episodes. The objective of this study was to determine the contributions of chemical components in PM2.5 to particle bioreactivity in Chinese megacities during haze episodes. PM2.5 samples were collected in 14 megacities across China from 23 December 2013 to 16 January 2014. Average PM2.5 concentrations ranged 88.92~199.67 µg/m3. Organic carbon (OC), elemental carbon (EC), anions, and cations per unit of PM2.5 were linked to cellular bioreactivity (i.e., reactive oxygen species (ROS) as assessed by dichlorodihydrofluorescein diacetate (DCFH) and inflammation as assessed by interleukin (IL)-6 in A549 cells). The contributions of chemicals in PM2.5 to ROS and inflammation were examined by the Pearson correlation coefficient and random forests. These results indicated that OC, Ca2+, SO42-, Cl-, F-, K+, and NO3- contributed to ROS production, whereas OC, Cl-, EC, K+, F-, Na+, and Ca2+ contributed to inflammation. In conclusion, PM2.5-contained OC and acidic ions are important in regulation of oxidative stress and inflammation during haze episodes. Our findings suggest that severe haze PM2.5 events cause deterioration in air quality and may adversely affect human health.
Assuntos
Poluentes Atmosféricos , Aerossóis/análise , Poluentes Atmosféricos/análise , Carbono/análise , China , Cidades , Monitoramento Ambiental , Humanos , Íons/análise , Tamanho da Partícula , Material Particulado/análise , Estações do AnoRESUMO
An outdoor solar assisted large-scale cleaning system (SALSCS) was constructed to mitigate the levels of fine particulate matter (PM2.5) in urban areas of Xi'an China, providing a quasi-experimental opportunity to examine the biologic responses to the changes in pollution level. We conducted this outdoor SALSCS based real-world quasi-interventional study to examine the associations of the SALSCS intervention and changes in air pollution levels with the biomarkers of systemic inflammation and oxidative stress in healthy elders. We measured the levels of 8-hydrox-2-deoxyguanosine (8-OHdG), Interlukin-6 (IL-6), as well as tumor necrosis factor alpha (TNF-α) from urine samples, and IL-6 from saliva samples of 123 healthy retired participants from interventional/control residential areas in two sampling campaigns. We collected daily 24-h PM2.5 samples in two residential areas during the study periods using mini-volume samplers. Data on PM10, gaseous pollutants and weather factors were collected from the nearest national air quality monitoring stations. We used linear mixed-effect models to examine the percent change in each biomarker associated with the SALSCS intervention and air pollution levels, after adjusting for time trend, seasonality, weather factors and personal characteristics. Results showed that the SALSCS intervention was significantly associated with decreases in the geometric mean of biomarkers by 47.6% (95% confidence interval: 16.5-67.2%) for 8-OHdG, 66% (31.0-83.3%) for TNF-α, 41.7% (0.2-65.9%) and 43.4% (13.6-62.9%) for urinary and salivary IL-6, respectively. An inter-quartile range increase of ambient PM2.5 exposure averaged on the day of the collection of bio-samples and the day before (34.1 µg/m3) was associated, albeit non-significantly so, with 22.8%-37.9% increases in the geometric mean of these biomarkers. This study demonstrated that the SALSCS intervention and decreased ambient air pollution exposure results in lower burden of systemic inflammation and oxidative stress in older adults.
Assuntos
Poluentes Atmosféricos , Poluição do Ar , Idoso , Poluentes Atmosféricos/análise , Poluição do Ar/análise , China , Poluição Ambiental , Humanos , Estresse Oxidativo , Material Particulado/análiseRESUMO
The mass, chemical composition and toxicological properties of fine particulates (PM2.5) emitted from cooking activities in three Hong Kong based restaurants and two simulated cooking experiments were characterized. Extracts from the PM2.5 samples elicited significant biological activities [cell viability, generation of reactive oxygen species (ROS), DNA damage and inflammation effect (TNF-α)] in a dose-dependent manner. The composition of PAHs, oxygenated PAHs (OPAHs) and azaarenes (AZAs) mixtures differed between samples. The concentration ranges of the Σ30PAHs, Σ17OPAHs and Σ4AZAs and Σ7Carbonyls in the samples were 9627-23,452 pg m-3, 503-3700 pg m-3, 33-263 pg m-3 and 158 - 5328 ng m-3, respectively. Cell viability caused by extracts from the samples was positively correlated to the concentration of benzo[a]anthracene, indeno[1,2,3-cd]pyrene and 1,4-naphthoquinone in the PM2.5 extracts. Cellular ROS production (upon exposure to extracts) was positively correlated with the concentrations of PM2.5, decaldehyde, acridine, Σ17OPAHs and 7 individual OPAHs. TNF-α showed significant positive correlations with the concentrations of most chemical species (elemental carbon, 16 individual PAHs including benzo[a]pyrene, Σ30PAHs, SO42-, Ca2+, Ca, Na, K, Ti, Cr, Mn, Fe, Cu and Zn). The concentrations of Al, Ti, Mn, Σ30PAHs and 8 individual PAHs including benzo[a]pyrene in the samples were positively correlated with DNA damage caused by extracts from the samples. This study demonstrates that inhalation of PM2.5 emitted from cooking could result in adverse human health effects.
Assuntos
Poluentes Atmosféricos , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Carvão Mineral , Culinária , Monitoramento Ambiental , Humanos , Material Particulado/análise , Material Particulado/toxicidade , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/toxicidadeRESUMO
In order to improve local air quality of Hong Kong, more than 99% taxies and public light buses were changed from diesel to liquefied petroleum gas (LPG) fuel type in the early 2000s. In addition to the catalytic converters wear and tear, it is necessary to control air pollutants emitted from LPG vehicles. Therefore, an LPG catalytic converter replacement programme (CCRP) was fulfilled from October 2013 to April 2014 by the Hong Kong government. Roadside volatile compounds (VOCs) were measured by on-line measurement techniques before and after the programme to evaluate the effectiveness of the LPG CCRP. The mixing ratios of total measured VOCs were found decreased from 69.3 ± 12.6 ppbv to 43.9 ± 6.5 ppbv after the LPG CCRP with the decreasing percentage of 36.7%. In addition, the total mixing ratio of LPG tracers, namely propane, i-butane, and n-butane, accounted for 49% of total measured VOCs before the LPG CCRP and the weighting percentage decreased to 34% after the programme. Moreover, the source apportionment of roadside VOCs also reflects the large decreasing trend of LPG vehicular emissions after the air pollution control measure. Due to the application of PTR-MS on measuring real-time VOCs and oxygenated volatile compounds (OVOCs) in this study, the emission ratios of individual OVOCs were investigated and being utilized to differentiate primary and secondary/biogenic sources of roadside OVOCs in Hong Kong. The findings demonstrate the effectiveness of the intervention programme, and are helpful to further implementation of air pollution control strategies in Hong Kong.
RESUMO
Intensive social and economic activity has led to serious pollution in the Yangtze River economic belt since 2000. It is urgent to study the evolution of the distribution of PM2.5 concentration and its influencing factors in this area, to adopt new ways of development into practice and promote comprehensive regional air pollution prevention and control. Based on PM2.5 concentration estimated by remote sensing retrieval, this paper studied the evolution of the distribution of PM2.5 concentration in the Yangtze River economic belt from 2000 to 2016, and analyzed spatial non-stationarity of the influence of natural and socio-economic factors on this evolution via a geographically weighted regression model. The results showed that:â The general law of PM2.5 concentration presented as higher in the east and lower in the west, with a significant trait of the pollution agglomerations corresponding to urban agglomerations. â¡Taking the year 2007 as a divide, annual concentration of PM2.5 went through a pattern of annually increasing from 2000 to 2007. and then wavelike decreasing from 2007 to 2016. The annual average concentration increased to 44.1 µg·m-3 in 2007 from the record of 27.2 µg·m-3 in 2000, and then decreased to 33.6 µg·m-3 in 2016. In terms of regions polluted, before 2007, it covered areas including the Yangtze River Delta urban agglomerations, the Yangtze River Middle Reaches urban agglomerations, and the Chengdu-Chongqing urban agglomerations, before quickly stretching to their neighboring areas; after 2007, the extent of areas covered shrank. â¢Based on spatial auto-correlation analysis, PM2.5 concentration had a significant spatial auto-correlation with hot spots spread over Shanghai, Jiangsu, north-central Anhui, northern Zhejiang, and the central part of Hubei, while cool spots were located in Yunnan, the western and southern parts of Sichuan, and the western part of Guizhou. â£There is a space-time discrepancy by socio-economic and natural factors in the distribution of PM2.5 concentration. The socio-economic factors mainly have a positive influence on the concentration, whereas precipitation, one of the natural factors, has a negative influence. The remaining natural factors not only varied in their degree of influence, but also triggered the influence either in a positive or negative manner from time to time and space to space.
RESUMO
Based on the ozone monitoring data from 2014 to 2018, we presented the variation of ozone concentration in Xi'an and revealed the effects of ozone concentration by meteorological factors based on the generalized additive model (GAM). The results showed that â with increasing ozone concentration year by year, the assessment standard of ozone pollution was overtaken by three consecutive years since 2016. However, the rising trend was slowed down since 2017 as a result of the strengthened pollution control during summer. â¡ The monthly curve of ozone concentration was presented as a reversed "V" model with a rising trend accompanying the rising temperature from January to July and a decreasing one during the rest of the year, peaking in July in terms of average monthly ozone concentration. However, this model would turn into an "M" in years with high precipitation when the valley witnessed the highest precipitation in a month. ⢠The ozone pollution increased from the year 2014 to 2018 with a stretch-forward ozone polluted time. Furthermore, the rates of ozone non-attainment increased from 1.9% in 2014 to 14% in 2018. In addition, the time ozone pollution emerged advanced from July to May. ⣠Based on the GAM model, ozone concentration was non-colinearly related to temperature, air pressure, sunshine duration, and relative humidity. However, the curves of these factors varied considerably, with a positive influence of temperature and sunshine duration and a negative influence of air pressure and relative humidity. The influence of precipitation was mainly witnessed in summers, while no influence of wind was observed. Furthermore, ozone pollution can be easily triggered under the following conditions:temperature>24â, air pressure <962 hPa, sunshine duration>9 h, and a relative humidity 36%-65% with no rain.
RESUMO
Epidemiological studies have demonstrated significant associations between traffic-related air pollution and adverse health outcomes. Personal exposure to fine particles (PM2.5) in transport microenvironments and their toxicological properties remain to be investigated. Commuter exposures were investigated in public transport systems (including the buses and Mass Transit Railway (MTR)) along two sampling routes in Hong Kong. Real-time sampling for PM2.5 and black carbon (BC), along with integrated PM2.5 sampling, were performed during the warm and cold season of 2016-2017, respectively. Commuter exposure to BC during 3-hour commuting time exhibited a wider range, from 3.4 to 4.6 µg/m3 on the bus and 5.5 to 8.7 µg/m3 in MTR cabin (p < .05). PM2.5 mass and major chemical constituents (including organic carbon (OC), elemental carbon (EC), and metals) were analyzed. Cytotoxicity, including cellular reactive oxygen species (ROS) production, was determined in addition to acellular ROS generation. PM2.5 treatment promoted the ROS generation in a concentration-dependent manner. Consistent diurnal variations were observed for commuter exposure to BC and PM2.5 components, along with cellular and acellular ROS generation, which marked with two peaks during the morning (08:00-11:00) and evening rush hours (17:30-20:30). Commuter exposures in the MTR system were characterized by higher levels of PM2.5 and elemental components (e.g., Ca, Cr, Fe, Zn, Ba) compared to riding the bus, along with higher cellular and acellular ROS production (p < .01). These metals were attributed to different sources: rail tracks, wheels, brakes, and crustal origin. Weak to moderate associations were shown for the analyzed transition metals with PM2.5-induced cell viability and cellular ROS. Multiple linear regression analysis revealed that Ni, Zn, Mn, Fe, Ti, and Co attributed to cytotoxicity and ROS generation. These findings underscore the importance of commuter exposures and their toxic effects, urging effective mitigating strategies to protect human health.