Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 57(45): 17629-17639, 2023 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-37906720

RESUMO

This study provided an in-depth understanding of enhanced algae inactivation by combining ultraviolet and peracetic acid (UV/PAA) and selecting Microcystis aeruginosa as the target algae species. The electron paramagnetic resonance (EPR) tests and scavenging experiments provided direct evidence on the formed reactive species (RSs) and indicated the dominant role of RSs including singlet oxygen (1O2) and hydroxyl (HO•) and organic (RO•) radicals in algae inactivation. Based on the algae inactivation kinetic model and the determined steady-state concentration of RSs, the contribution of RSs was quantitatively assessed with the second-order rate constants for the inactivation of algae by HO•, RO•, and 1O2 of 2.67 × 109, 3.44 × 1010, and 1.72 × 109 M-1 s-1, respectively. Afterward, the coexisting bi/carbonate, acting as a shuttle, that promotes the transformation from HO• to RO• was evidenced to account for the better performance of the UV/PAA system in algae inactivation under the natural water background. Subsequently, along with the evaluation of the UV/PAA preoxidation to modify coagulation-sedimentation, the possible application of the UV/PAA process for algae removal was advanced.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Raios Ultravioleta , Ácido Peracético/farmacologia , Água , Peróxido de Hidrogênio , Oxirredução
2.
Environ Sci Technol ; 57(28): 10478-10488, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37389809

RESUMO

Environmental-friendly and low-cost catalysts for peracetic acid (PAA) activation are vital to promote their application for micropollutant degradation in water. In this study, powdered activated carbon (PAC) was reported to improve the degradation of sulfamethoxazole (SMX). The improvement of SMX degradation in the PAC/PAA system was expected to be because of the PAA activation rather than the co-existing H2O2 activation. Non-radical oxidation pathways, including the mediated electron-transfer process and singlet oxygen (1O2), were evidenced to play the dominant roles in the degradation of micro-organic pollutants. The graphitization of PAC, persistent free radicals, and electron-donating groups like C-OH were proposed to contribute to the activation of PAA. High SMX degradation could be achieved in the acidic and neutral conditions in the PAC/PAA system. Overall, higher dosages of PAC (0-0.02 g/L) and PAA (0-100 µM) benefited the degradation of SMX. The presence of HCO3- could lower the SMX degradation significantly, while Cl-, PO43-, and humic acid (HA) only reduced the SMX degradation efficiency a little. Overall, this study offered an efficient non-radical PAA activation method using PAC, which can be effectively used to degrade micro-organic pollutants.


Assuntos
Ácido Peracético , Poluentes Químicos da Água , Sulfametoxazol , Peróxido de Hidrogênio , Carvão Vegetal , Oxirredução
3.
Water Res ; 260: 121959, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38909420

RESUMO

Combined sewer overflows (CSOs) introduce microbial contaminants into the receiving water bodies, thereby posing risks to public health. This study systematically investigated the disinfection performance and mechanisms of the combined process of ultraviolet and peracetic acid (UV/PAA) in CSOs with selecting Escherichia coli (E. coli) as a target microbial contaminant. The UV/PAA process exhibited superior performance in inactivating E. coli in simulated CSOs compared with UV, PAA, and UV/H2O2 processes. Increasing the PAA dosage greatly enhanced the disinfection efficiency, while turbidity and organic matter hindered the inactivation performance. Singlet oxygen (1O2), hydroxyl (•OH) and organic radicals (RO•) contributed to the inactivation of E. coli, with •OH and RO• playing the prominent role. Variations of intracellular reactive oxygen species, malondialdehyde, enzymes activities, DNA contents and biochemical compositions of E. coli cells suggested that UV/PAA primarily caused oxidative damage to intracellular molecules rather than the damage to the lipids of the cell membrane, therefore effectively limited the regrowth of E. coli. Additionally, the UV/PAA process displayed an outstanding performance in disinfecting actual raw CSOs, achieving a 2.90-log inactivation of total bacteria after reaction for 4 min. These results highlighted the practical applicability and effectiveness of the UV/PAA process in the disinfection of CSOs.


Assuntos
Desinfecção , Escherichia coli , Ácido Peracético , Esgotos , Raios Ultravioleta , Desinfecção/métodos , Ácido Peracético/farmacologia , Escherichia coli/efeitos dos fármacos , Esgotos/microbiologia , Oxirredução , Espécies Reativas de Oxigênio/metabolismo
4.
J Hazard Mater ; 445: 130571, 2023 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-37055977

RESUMO

In this study, Fe(Ⅱ)/peracetic acid (PAA) and Fe(Ⅱ)/sodium hypochlorite (NaClO) systems were applied as the combined preoxidation and coagulation process to enhance algae removal. A high removal rate of algae and turbidity could be achieved, with most algal cells keeping intact when adding reasonable concentrations of PAA and NaClO to enhance Fe(Ⅱ) coagulation. The variations of chlorophyll a, malondialdehyde, and intracellular reactive oxygen species suggested that moderate oxidation with only destroying surface-adsorbed organic matter rather than cell integrity was realized. The generated organic radicals, Fe(Ⅳ), and hydroxy radical played the major roles in the Fe(Ⅱ)/PAA system for the moderate oxidation of algal cells, but direct oxidation by NaClO rather than producing reactive species in the Fe(Ⅱ)/NaClO process contributed to the preoxidation. Concurrently, the in-situ formed Fe(Ⅲ) greatly promoted the agglomerating and settling of algae. The analysis of cell integrity, biochemical compositions, and fluorescence excitation-emission matrices spectra demonstrated that excess NaClO but not PAA would seriously damage the algal cells. This might be because that NaClO would directly oxidize the cell wall/membrane, while PAA mainly permeates into the cell to inactivate algae. These results suggest that Fe(Ⅱ)/PAA is an efficient strategy for algae-laden water treatment without serious algae lysis.


Assuntos
Hipoclorito de Sódio , Purificação da Água , Hipoclorito de Sódio/farmacologia , Hipoclorito de Sódio/química , Ácido Peracético/farmacologia , Compostos Férricos , Clorofila A , Oxirredução , Purificação da Água/métodos , Compostos Ferrosos/química
5.
J Hazard Mater ; 441: 129885, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36115095

RESUMO

The hydroxylamine-enhanced Fe(II)/peracetic acid (PAA) process is a promising advanced oxidation process (AOP) with the generation of reactive species (RS) including RO•, •OH and Fe(IV). Nevertheless, it is still challenging to identify which RS is the major intermediate oxidant, and the reasons why the optimal condition is pH 4.5 rather than 3.0 are also unclear. Herein, the generation of RS and their contribution to the degradation of three micro-pollutants were explored. The quenching experiments and pseudo first-order kinetic model demonstrated that RO• rather than the other two RS were predominant. Then the overall generation and evolution pathways of RS were depicted. The elevation of pH (3.0-4.5) would accelerate the Fe(II)/Fe(III) redox cycle through the enhanced reduction of Fe(III) by hydroxylamine and induce the conversion of Fe(IV) to RO•, which benefited naproxen degradation. While the adverse Fe(III) precipitation would dominate the reduced degradation performance with the solution pH higher than 4.5. The elevation of PAA and Fe(II) dosages sped up the PAA activation, while excess hydroxylamine could consume the formed RS and exhibited an inhibitory effect. This study helps further understand the role of HA and differentiate the contribution of RS in the emerging PAA-based AOPs.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Compostos Férricos , Compostos Ferrosos , Peróxido de Hidrogênio , Concentração de Íons de Hidrogênio , Hidroxilamina , Hidroxilaminas , Ferro , Naproxeno , Oxidantes , Oxirredução , Ácido Peracético
6.
Water Res ; 208: 117847, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34794020

RESUMO

The inactivation of algae by a combined process of peracetic acid and ultraviolet irradiation (UV/PAA) was systematically investigated by choosing Microcystis aeruginosa as the reference algal species. Both hydroxyl (HO•) and organic radicals (RO•) contributed to the cell integrity loss and RO• played the dominant roles. The algae inactivation kinetics can be well fitted by the typical Hom model, showing that the inactivation kinetic curves followed a type of shoulder and exponential reduction. The initial shoulder might be induced by the protection from the cell wall. Although the results from the cell morphology, UV-vis spectra and fluorescence excitation-emission matrices analysis suggested the cell lysis and the release of algal organic matter (AOM) in the UV/PAA process, the AOM could be subsequently degraded. Humic acid (1 - 5 mg/L) inhibited the algal cell inactivation, and the presence of chloride (0.5 - 2 mM) had little effect on the cell viability reduction. However, the addition of bicarbonate (1 - 5 mM) promoted cell integrity loss. The UV/PAA process displayed better performance under the natural water background, demonstrating the extensive potential for the practical application of this approach. This study suggests that the UV/PAA process is an effective strategy for algae inactivation.


Assuntos
Microcystis , Purificação da Água , Radical Hidroxila , Ácido Peracético/farmacologia , Raios Ultravioleta
7.
Chemosphere ; 285: 131442, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34256205

RESUMO

Degradation of tetrabromobisphenol A (TBBPA), an emerging micropollutant, by photo/Fe3+/sulfite process was investigated under different operational conditions and water matrices. 91% of TBBPA was efficiently degraded within 30 min in the Fe3+/sulfite system under sunlight irradiation when the initial pH was 6.0, which is much higher than that of TBBPA without irradiation (52%). The acceleration of radical generation and direct photolysis by photo irradiation were responsible for the enhanced TBBPA degradation. Although this process showed better performance on TBBPA degradation in weak acid conditions, the high removal efficiency was also achieved at near-neutral pH. HO, SO4- and direct photolysis contributed to TBBPA degradation. Direct photolysis and SO4- presented the dominant contribution. The degradation rate increased with elevating the Fe3+ dose (10-40 µM), but slightly decreased when the Fe3+ dose was further raised to 100 µM. Similarly, the degradation efficiency initially increased with increasing the sulfite dose (100-400 µM), but decreased when the sulfite concentration reached 1000 µM. Dissolved oxygen played a crucial role in TBBPA degradation, the presence of water matrices such as humic acid (0.8-4.0 mg/L), bicarbonate (0.5-10 mM) and chloride (0.5-10 mM) retarded TBBPA degradation. This study proposed a new efficient strategy to enhance TBBPA degradation in the Fe3+/sulfite process.


Assuntos
Bifenil Polibromatos , Poluentes Químicos da Água , Bifenil Polibromatos/análise , Sulfitos , Luz Solar , Poluentes Químicos da Água/análise
8.
Water Res ; 201: 117291, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34107364

RESUMO

Sulfonamide antibiotics (SAs) are typical antibiotics and have attracted increasing concerns about their wide occurrence in environment as well as potential risk for human health. In this study, we applied a novel advanced oxidation process in SAs degradation by combining molybdenum sulfide and peracetic acid (MoS2/PAA). Reactive oxygen species (ROS) including HO●, CH3C(O)O●, CH3C(O)OO●, and 1O2 were generated from PAA by MoS2 activation and contributed to SAs degradation. The effects of initial pH, the dosages of PAA and MoS2, and humic acid for SAs degradation were further evaluated by selecting sulfamethoxazole (SMX) as a target SA in the MoS2/PAA process. Results suggested that the optimum pH for SMX removal was 3, where the degradation efficiency of SMX was higher than 80% after reaction for 15 min. Increasing PAA (0.075-0.45 mM) or MoS2 (0.1-0.4 g/L) dosages facilitated the SMX degradation, while the presence of humic acids retarded the SMX removal. This MoS2/PAA process also showed good efficiencies in removing other SAs including sulfaguanidine, sulfamonomethoxine and sulfamerazine. Their possible degradation pathways were proposed based on the products identification and DFT calculation, showing that apart from the oxidation of amine groups to nitro groups in SAs, MoS2/PAA induced SO2 extrusion reaction for SAs that contained six-membered heterocyclic moieties.


Assuntos
Ácido Peracético , Poluentes Químicos da Água , Antibacterianos , Dissulfetos , Humanos , Peróxido de Hidrogênio , Molibdênio , Oxirredução , Sulfametoxazol , Sulfonamidas
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa