Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 268
Filtrar
1.
Circ Res ; 132(5): 601-624, 2023 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-36786216

RESUMO

BACKGROUND: Hypertension can lead to podocyte damage and subsequent apoptosis, eventually resulting in glomerulosclerosis. Although alleviating podocyte apoptosis has clinical significance for the treatment of hypertensive nephropathy, an effective therapeutic target has not yet been identified. The function of septin4, a proapoptotic protein and an important marker of organ damage, is regulated by post-translational modification. However, the exact role of septin4 in regulating podocyte apoptosis and its connection to hypertensive renal damage remains unclear. METHODS: We investigated the function and mechanism of septin4 in hypertensive nephropathy to discover a theoretical basis for targeted treatment. Mouse models including Rosa 26 (Gt(ROSA)26Sor)-SIRT2 (silent mating type information regulation 2 homolog-2)-Flag-TG (transgenic) (SIRT2-TG) mice SIRT2-knockout, and septin4-K174Q mutant mice, combined with proteomic and acetyl proteomics analysis, followed by multiple molecular biological methodologies, were used to demonstrate mechanisms of SIRT2-mediated deacetylation of septin4-K174 in hypertensive nephropathy. RESULTS: Using transgenic septin4-K174Q mutant mice treated with the antioxidant Tempol, we found that hyperacetylation of the K174 site of septin4 exacerbates Ang II (angiotensin II)- induced hypertensive renal injury resulting from oxidative stress. Proteomics and Western blotting assays indicated that septin4-K174Q activates the cleaved-PARP1 (poly [ADP-ribose] polymerase family, member 1)-cleaved-caspase3 pathway. In septin4-knockdown human renal podocytes, septin4-K174R, which mimics deacetylation at K174, rescues podocyte apoptosis induced by Ang II. Immunoprecipitation and mass spectrometry analyses identified SIRT2 as a deacetylase that interacts with the septin4 GTPase domain and deacetylates septin4-K174. In Sirt2-deficient mice and SIRT2-knockdown renal podocytes, septin4-K174 remains hyperacetylated and exacerbates hypertensive renal injury. By contrast, in Rosa26-Sirt2-Flag (SIRT2-TG) mice and SIRT2-knockdown renal podocytes reexpressing wild-type SIRT2, septin4-K174 is hypoacetylated and mitigates hypertensive renal injury. CONCLUSIONS: Septin4, when activated through acetylation of K174 (K174Q), promotes hypertensive renal injury. Septin4-K174R, which mimics deacetylation by SIRT2, inhibits the cleaved-PARP1-cleaved-caspase3 pathway. Septin4-K174R acts as a renal protective factor, mitigating Ang II-induced hypertensive renal injury. These findings indicate that septin4-K174 is a potential therapeutic target for the treatment of hypertensive renal injury.


Assuntos
Hipertensão Renal , Hipertensão , Animais , Humanos , Camundongos , Apoptose , Hipertensão Renal/genética , Rim/metabolismo , Camundongos Transgênicos , Proteômica , Sirtuína 2/genética , Sirtuína 2/metabolismo
2.
Cell ; 141(2): 243-54, 2010 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-20362325

RESUMO

Defective DNA repair by homologous recombination (HR) is thought to be a major contributor to tumorigenesis in individuals carrying Brca1 mutations. Here, we show that DNA breaks in Brca1-deficient cells are aberrantly joined into complex chromosome rearrangements by a process dependent on the nonhomologous end-joining (NHEJ) factors 53BP1 and DNA ligase 4. Loss of 53BP1 alleviates hypersensitivity of Brca1 mutant cells to PARP inhibition and restores error-free repair by HR. Mechanistically, 53BP1 deletion promotes ATM-dependent processing of broken DNA ends to produce recombinogenic single-stranded DNA competent for HR. In contrast, Lig4 deficiency does not rescue the HR defect in Brca1 mutant cells but prevents the joining of chromatid breaks into chromosome rearrangements. Our results illustrate that HR and NHEJ compete to process DNA breaks that arise during DNA replication and that shifting the balance between these pathways can be exploited to selectively protect or kill cells harboring Brca1 mutations.


Assuntos
Proteína BRCA1/genética , Reparo do DNA , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Animais , Linfócitos B/metabolismo , Proteínas Cromossômicas não Histona , Quebras de DNA , Proteínas de Ligação a DNA , Feminino , Instabilidade Genômica , Humanos , Camundongos , Proteína 1 de Ligação à Proteína Supressora de Tumor p53
3.
EMBO J ; 39(10): e103111, 2020 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-32187724

RESUMO

The homeostatic link between oxidative stress and autophagy plays an important role in cellular responses to a wide variety of physiological and pathological conditions. However, the regulatory pathway and outcomes remain incompletely understood. Here, we show that reactive oxygen species (ROS) function as signaling molecules that regulate autophagy through ataxia-telangiectasia mutated (ATM) and cell cycle checkpoint kinase 2 (CHK2), a DNA damage response (DDR) pathway activated during metabolic and hypoxic stress. We report that CHK2 binds to and phosphorylates Beclin 1 at Ser90/Ser93, thereby impairing Beclin 1-Bcl-2 autophagy-regulatory complex formation in a ROS-dependent fashion. We further demonstrate that CHK2-mediated autophagy has an unexpected role in reducing ROS levels via the removal of damaged mitochondria, which is required for cell survival under stress conditions. Finally, CHK2-/- mice display aggravated infarct phenotypes and reduced Beclin 1 p-Ser90/Ser93 in a cerebral stroke model, suggesting an in vivo role of CHK2-induced autophagy in cell survival. Taken together, these results indicate that the ROS-ATM-CHK2-Beclin 1-autophagy axis serves as a physiological adaptation pathway that protects cells exposed to pathological conditions from stress-induced tissue damage.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteína Beclina-1/metabolismo , Quinase do Ponto de Checagem 2/metabolismo , AVC Isquêmico/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Autofagia , Linhagem Celular , Modelos Animais de Doenças , Células HCT116 , Células HEK293 , Células HeLa , Humanos , Camundongos , Estresse Oxidativo , Fosforilação
4.
J Med Virol ; 96(2): e29411, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38285434

RESUMO

Cap RNA methylations play important roles in the replication, evasion of host RNA sensor recognition, and pathogenesis. Coronaviruses possess both guanine N7- and 2'-O-ribose methyltransferases (N7-MTase and 2'-O-MTase) encoded by nonstructural protein (nsp) 14 and nsp16/10 complex, respectively. In this study, we reconstituted the two-step RNA methylations of N7-MTase and 2'-O-MTase of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in vitro and demonstrated its common and different features in comparison with that of SARS-CoV. We revealed that the nsp16/10 2'-O-MTase of SARS-CoV-2 has a broader substrate selectivity than the counterpart of SARS-CoV and can accommodate both unmethylated and uncapped RNA substrates in a sequence-independent manner. Most intriguingly, the substrate selectivity of nsp16/10 complex is not determined by the apoenzyme of nsp16 MTase but by its cofactor nsp10. These results provide insight into the unique features of SARS-CoV-2 MTases and may help develop strategies to precisely intervene in the methylation pathway and pathogenesis of SARS-CoV-2.


Assuntos
COVID-19 , Metiltransferases , Humanos , Metiltransferases/genética , SARS-CoV-2/genética , Metilação de RNA , Capuzes de RNA
5.
J Environ Manage ; 351: 119914, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38157569

RESUMO

Inland shallow lakes are recognized as an important source of greenhouse gases (GHGs), and their contribution is expected to increase due to global eutrophication. The generation and release of GHGs involved multiple variables, leading to many uncertain potential factors. This study examined the emission characteristics of GHGs at the water-air interface in 12 shallow lakes categorized into four eutrophic levels in the Yangtze River basin. The average emission rates of CH4, CO2 and N2O were 1.55, 3.43, 18.13 and 30.47 mg m-2 h-1, 4.12, 14.64, 25.11 and 69.84 mg m-2 h-1, and 0.2, 0.25, 0.43 and 0.79 mg m-2 day-1 in the oligotrophic, mesotrophic, eutrophic and hypereutrophic lakes, respectively. There were significant correlations between eutrophic levels and the emission rates of CH4 and CO2 (p < 0.05). Redundancy analysis and Mantel test were conducted to further examine the key factors influencing carbon emissions from eutrophic water. It was found that the presence of algae and nutrients in the overlying water played a crucial role in the release of GHGs, indicating the importance of ecosystem productivity in the carbon budget of the lake. In order to assess the bioavailability of organic matter, a new indicator called R(P/H) was proposed. This indicator represents the ratio of protein and humus-like components, which were obtained through EEMs-PARAFAC modeling. The relationship between R(P/H) and CH4 was found to be exponential (R2 = 0.90). Additionally, R(P/H) showed a linear relationship with CO2 and N2O (R2 = 0.68, R2 = 0.75). Therefore, it is crucial to consider R(P/H) as an important factor in accurately estimating global GHG emission fluxes in the future, especially with advancements in the database.


Assuntos
Gases de Efeito Estufa , Gases de Efeito Estufa/análise , Lagos/análise , Ecossistema , Dióxido de Carbono/análise , Metano/análise , Água/análise , Carbono/análise , China
6.
Molecules ; 29(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38792173

RESUMO

The ongoing COVID-19 pandemic still threatens human health around the world. The methyltransferases (MTases) of SARS-CoV-2, specifically nsp14 and nsp16, play crucial roles in the methylation of the N7 and 2'-O positions of viral RNA, making them promising targets for the development of antiviral drugs. In this work, we performed structure-based virtual screening for nsp14 and nsp16 using the screening workflow (HTVS, SP, XP) of Schrödinger 2019 software, and we carried out biochemical assays and molecular dynamics simulation for the identification of potential MTase inhibitors. For nsp14, we screened 239,000 molecules, leading to the identification of three hits A1-A3 showing N7-MTase inhibition rates greater than 60% under a concentration of 50 µM. For the SAM binding and nsp10-16 interface sites of nsp16, the screening of 210,000 and 237,000 molecules, respectively, from ZINC15 led to the discovery of three hit compounds B1-B3 exhibiting more than 45% of 2'-O-MTase inhibition under 50 µM. These six compounds with moderate MTase inhibitory activities could be used as novel candidates for the further development of anti-SARS-CoV-2 drugs.


Assuntos
Antivirais , Inibidores Enzimáticos , Metiltransferases , Simulação de Dinâmica Molecular , SARS-CoV-2 , Proteínas não Estruturais Virais , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/metabolismo , Proteínas não Estruturais Virais/química , Metiltransferases/antagonistas & inibidores , Metiltransferases/metabolismo , Metiltransferases/química , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/enzimologia , Antivirais/farmacologia , Antivirais/química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Humanos , Simulação de Acoplamento Molecular , Avaliação Pré-Clínica de Medicamentos , Tratamento Farmacológico da COVID-19 , COVID-19/virologia , Sítios de Ligação , Exorribonucleases
7.
Environ Geochem Health ; 46(5): 165, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38592368

RESUMO

Soil pollution around Pb-Zn smelters has attracted widespread attention around the world. In this study, we compiled a database of eight potentially toxic elements (PTEs) Pb, Zn, Cd, As, Cr, Ni, Cu, and Mn in the soil of Pb-Zn smelting areas by screening the published research papers from 2000 to 2023. The pollution assessment and risk screening of eight PTEs were carried out by geo-accumulation index (Igeo), potential ecological risk index (PERI) and health risk assessment model, and Monte Carlo simulation employed to further evaluate the probabilistic health risks. The results suggested that the mean values of the eight PTEs all exceeded the corresponding values in the upper crust, and more than 60% of the study sites had serious Pb and Cd pollution (Igeo > 4), with Brazil, Belgium, China, France and Slovenia having higher levels of pollution than other regions. Besides, PTEs in smelting area caused serious ecological risk (PERI = 10912.12), in which Cd was the main contributor to PREI (86.02%). The average hazard index (HI) of the eight PTEs for adults and children was 7.19 and 9.73, respectively, and the average value of total carcinogenic risk (TCR) was 4.20 × 10-3 and 8.05 × 10-4, respectively. Pb and As are the main contributors to non-carcinogenic risk, while Cu and As are the main contributors to carcinogenic risk. The probability of non-carcinogenic risk in adults and children was 84.05% and 97.57%, while carcinogenic risk was 92.56% and 79.73%, respectively. In summary, there are high ecological and health risks of PTEs in the soil of Pb-Zn smelting areas, and Pb, Cd, As and Cu are the key elements that cause contamination and risk, which need to be paid attention to and controlled. This study is expected to provide guidance for soil remediation in Pb-Zn smelting areas.


Assuntos
Cádmio , Chumbo , Adulto , Criança , Humanos , Chumbo/toxicidade , Carcinogênese , Carcinógenos , Poluição Ambiental , Probabilidade , Medição de Risco , Solo , Zinco
8.
Cardiovasc Diabetol ; 22(1): 107, 2023 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-37149668

RESUMO

BACKGROUND: Endothelial injury caused by Type 2 diabetes mellitus (T2DM) is considered as a mainstay in the pathophysiology of diabetic vascular complications (DVCs). However, the molecular mechanism of T2DM-induced endothelial injury remains largely unknown. Here, we found that endothelial WW domain-containing E3 ubiquitin protein ligase 2 (WWP2) act as a novel regulator for T2DM-induced vascular endothelial injury through modulating ubiquitination and degradation of DEAD-box helicase 3 X-linked (DDX3X). METHODS: Single-cell transcriptome analysis was used to evaluate WWP2 expression in vascular endothelial cells of T2DM patients and healthy controls. Endothelial-specific Wwp2 knockout mice were used to investigate the effect of WWP2 on T2DM-induced vascular endothelial injury. In vitro loss- and gain-of-function studies were performed to assess the function of WWP2 on cell proliferation and apoptosis of human umbilical vein endothelial cells. The substrate protein of WWP2 was verified using mass spectrometry, coimmunoprecipitation assays and immunofluorescence assays. The mechanism of WWP2 regulation on substrate protein was investigated by pulse-chase assay and ubiquitination assay. RESULTS: The expression of WWP2 was significantly down-regulated in vascular endothelial cells during T2DM. Endothelial-specific Wwp2 knockout in mice significantly aggravated T2DM-induced vascular endothelial injury and vascular remodeling after endothelial injury. Our in vitro experiments showed that WWP2 protected against endothelial injury by promoting cell proliferation and inhibiting apoptosis in ECs. Mechanically, we found that WWP2 is down-regulated in high glucose and palmitic acid (HG/PA)-induced ECs due to c-Jun N-terminal kinase (JNK) activation, and uncovered that WWP2 suppresses HG/PA-induced endothelial injury by catalyzing K63-linked polyubiquitination of DDX3X and targeting it for proteasomal degradation. CONCLUSION: Our studies revealed the key role of endothelial WWP2 and the fundamental importance of the JNK-WWP2-DDX3X regulatory axis in T2DM-induced vascular endothelial injury, suggesting that WWP2 may serve as a new therapeutic target for DVCs.


Assuntos
Diabetes Mellitus Tipo 2 , Ubiquitina-Proteína Ligases , Humanos , Camundongos , Animais , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/metabolismo , Regulação para Baixo , Células Endoteliais/metabolismo , Diabetes Mellitus Tipo 2/complicações , Ubiquitinação , Camundongos Knockout , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo
9.
FASEB J ; 36(11): e22580, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36189652

RESUMO

Heparin-binding protein (HBP), as a granule protein secreted by polymorphonuclear neutrophils, participates in the pathophysiological process of sepsis. It has been reported that HBP is a biomarker of sepsis related to the severity of septic shock and organ dysfunction. HBP binds to vascular endothelial cells as a primary target site. However, it is still unclear whether HBP-binding protein receptors exist on the surface of endothelial cells. The effect of HBP on vascular permeability in sepsis and its mechanism needs to be explored. We conducted in vivo and in vitro studies and demonstrated that HBP binds to transforming growth factor-ß receptor type 2 (TGF-ß-R2) as a ligand. Glutathione S-transferase pull-down analysis revealed that HBP mainly interacts with the extracellular domain of TGF-ß-R2. HBP induces acute lung injury and vascular leakage via activation of the TGF-ß/SMAD2/3 signaling pathway. A permeability assay suggested that TGF-ß-R2 is necessary for HBP-induced increased permeability. We also defined the role of HBP and its potential membrane receptor TGF-ß-R2 in the blood-gas barrier in the pathogenesis of HBP-related acute lung injury.


Assuntos
Lesão Pulmonar Aguda , Sepse , Peptídeos Catiônicos Antimicrobianos , Biomarcadores , Proteínas Sanguíneas , Células Endoteliais/metabolismo , Glutationa Transferase/metabolismo , Humanos , Ligantes , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Transdução de Sinais , Proteínas Smad/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Fatores de Crescimento Transformadores/farmacologia , Proteínas rho de Ligação ao GTP/metabolismo
10.
J Fish Biol ; 102(2): 328-339, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36317644

RESUMO

Hybridization is one of the primary methods used to cultivate farmed grouper species. The hybrid grouper derived from crossing Epinephelus fuscoguttatus (♀) and E. polyphekadion (♂) exhibits growth superiority over its parents. The genetic characteristics and growth patterns of the hybrid grouper have not yet been defined. This study confirms the ploidy level of the hybrid grouper (2n = 48) using chromosome count analysis and flow cytometry. The 5S rDNA family was used to evaluate genetic diversity. Only one 5S class (~400 bp) was detected in the hybrid grouper, which could be used to distinguish between two different types based on nucleotide sequences, likely representing homologous unit classes from the female and male parental species. Growth patterns of 5-8-month-old hybrid groupers were also monitored. In this phase, a positive allometric growth pattern in body mass with total length was found. Body height and body mass were significantly correlated based on correlation and path coefficient, suggesting that body height could serve as an excellent index to increase body mass. These results aid our understanding of the genetic evolution of the hybrid grouper and inform the development of improved rearing techniques.


Assuntos
Bass , Feminino , Masculino , Animais , Hibridização Genética , Sequência de Bases
11.
J Cell Mol Med ; 26(2): 491-506, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34866322

RESUMO

In multiple types of cancer, decreased tumour cell apoptosis during chemotherapy is indicative of decreased chemosensitivity. Forkhead box K2 (FOXK2), which is essential for cell fate, regulates cancer cell apoptosis through several post-translational modifications. However, FOXK2 acetylation has not been extensively studied. Here, we evaluated the effects of sirtiun 1 (SIRT1) on FOXK2 deacetylation. Our findings demonstrated that SIRT1 inhibition increased FOXK2-induced chemosensitivity to cisplatin and that K223 in FOXK2 was acetylated. Furthermore, FOXK2 K223 deacetylation reduced chemosensitivity to cisplatin in vitro and in vivo. Mechanistically, FOXK2 was acetylated by the acetyltransferase cAMP response element binding protein and deacetylated by SIRT1. Furthermore, cisplatin attenuated the interaction between FOXK2 and SIRT1. Cisplatin or SIRT1 inhibition enhanced FOXK2 acetylation, thereby reducing the nuclear distribution of FOXK2. Additionally, FOXK2 K223 acetylation significantly affected the expression of cell cycle-related and apoptosis-related genes in cisplatin-stimulated cancer cells, and FOXK2 K223 hyperacetylation promoted mitotic catastrophe, which enhanced chemosensitivity to cisplatin. Overall, our results provided insights into the mechanisms of SIRT1-mediated FOXK2 deacetylation, which was involved in chemosensitivity to cisplatin.


Assuntos
Cisplatino , Sirtuína 1 , Acetilação , Apoptose , Cisplatino/farmacologia , Processamento de Proteína Pós-Traducional , Sirtuína 1/genética , Sirtuína 1/metabolismo
12.
Bioinformatics ; 37(Suppl_1): i231-i236, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-34252948

RESUMO

MOTIVATION: Untargeted mass spectrometry experiments enable the profiling of metabolites in complex biological samples. The collected fragmentation spectra are the metabolite's fingerprints that are used for molecule identification and discovery. Two main mass spectrometry strategies exist for the collection of fragmentation spectra: data-dependent acquisition (DDA) and data-independent acquisition (DIA). In the DIA strategy, all the metabolites ions in predefined mass-to-charge ratio ranges are co-isolated and co-fragmented, resulting in multiplexed fragmentation spectra that are challenging to annotate. In contrast, in the DDA strategy, fragmentation spectra are dynamically and specifically collected for the most abundant ions observed, causing redundancy and sub-optimal fragmentation spectra collection. Yet, DDA results in less multiplexed fragmentation spectra that can be readily annotated. RESULTS: We introduce the MS2Planner workflow, an Iterative Optimized Data Acquisition strategy that optimizes the number of high-quality fragmentation spectra over multiple experimental acquisitions using topological sorting. Our results showed that MS2Planner increases the annotation rate by 38.6% and is 62.5% more sensitive and 9.4% more specific compared to DDA. AVAILABILITY AND IMPLEMENTATION: MS2Planner code is available at https://github.com/mohimanilab/MS2Planner. The generation of the inclusion list from MS2Planner was performed with python scripts available at https://github.com/lfnothias/IODA_MS. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Espectrometria de Massas , Íons , Fluxo de Trabalho
13.
J Med Virol ; 94(11): 5574-5581, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35869417

RESUMO

Mortality in coronavirus disease 2019 (COVID-19) patients has been linked to the presence of a "cytokine storm" induced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, which involves elevated levels of circulating cytokines and immune-cell hyperactivation. Targeting cytokines during the management of COVID-19 patients has the potential to improve survival rates and reduce mortality. Although cytokine blockers and immune-host modulators are currently being tested in severely ill COVID-19 patients to cope with the overwhelming systemic inflammation, there is not too many successful cases, thus finding new cytokine blockers to attenuate the cytokine storm syndrome is meaningful. In this paper, we significantly attenuated the inflammatory responses induced by mouse hepatitis viruses A59 and SARS-CoV-2 through a soluble DR5-Fc (sDR5-Fc) chimeric protein that blocked the TNF-related apoptosis-inducing ligand-death receptor 5 (TRAIL-DR5) interaction. Our findings indicates that blocking the TRAIL-DR5 pathway through the sDR5-Fc chimeric protein is a promising strategy to treat COVID-19 severe patients requiring intensive care unit  admission or with chronic metabolic diseases.


Assuntos
Tratamento Farmacológico da COVID-19 , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/imunologia , SARS-CoV-2 , Animais , Síndrome da Liberação de Citocina/tratamento farmacológico , Síndrome da Liberação de Citocina/prevenção & controle , Citocinas/metabolismo , Camundongos , Proteínas Recombinantes de Fusão/genética
14.
J Med Virol ; 94(8): 3605-3612, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35355296

RESUMO

A novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been identified as the causative agent of the current coronavirus disease 2019 pandemic. Development of animal models that parallel the clinical and pathologic features of disease are highly essential to understanding the pathogenesis of SARS-CoV-2 infection and the development of therapeutics and prophylactics. Several mouse models that express the human angiotensin converting enzyme 2 (hACE2) have been created, including transgenic and knock-in strains, and viral vector-mediated delivery of hACE2. However, the comparative pathology of these mouse models infected with SARS-CoV-2 are unknown. Here, we perform systematic comparisons of the mouse models including K18-hACE2 mice, KI-hACE2 mice, Ad5-hACE2 mice and CAG-hACE2 mice, which revealed differences in the distribution of lesions and the characteristics of pneumonia induced. Based on these observations, the hACE2 mouse models meet different needs of SARS-CoV-2 researches. The similarities or differences among the model-specific pathologies may help in better understanding the pathogenic process of SARS-CoV-2 infection and aiding in the development of effective medications and prophylactic treatments for SARS-CoV-2.


Assuntos
COVID-19 , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Transgênicos , Pandemias , Peptidil Dipeptidase A/genética , SARS-CoV-2
15.
FASEB J ; 35(7): e21709, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34143518

RESUMO

Tissues undergo a process of degeneration as the body ages. Mesenchymal stem cells (MSCs) have been found to have major potential in delaying the aging process in tissues and organs. However, the mechanism underlying the anti-aging effects of MSC is not clear which limits clinical applications. In this study, we used adipose-derived mesenchymal stem cells (ADSCs) to perform anti-aging treatments on senescent cells and progeroid animal models. Following intervention with ADSCs, replicative senescence was delayed and metabolic homeostasis was transformed from catabolism to anabolism. Metabolomic tests were used to analyze different metabolites. We found that ADSCs acted to accelerate mitophagy which eliminated intracellular ROS and improved the quality of mitochondria. These processes acted to regulate the cellular metabolic homeostasis and ultimately delayed the process of aging. Allogeneic stem cell therapy in a Progeria animal model (DNA polymerase gamma (POLG) knockin, mitochondrial dysfunction) also showed that ADSC therapy can improve alopecia and kyphosis by promoting mitophagy. Our research confirms for the first time that allogeneic stem cell therapy can improve aging-related symbols and phenotypes through mitochondrial quality control. These results are highly significant for the future applications of stem cells in aging-related diseases.


Assuntos
Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Envelhecimento/metabolismo , Homeostase/fisiologia , Mitofagia/fisiologia , Células-Tronco/metabolismo , Animais , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Células Cultivadas , Senescência Celular/fisiologia , Modelos Animais de Doenças , Feminino , Masculino , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Transplante de Células-Tronco/métodos
16.
Biomacromolecules ; 23(7): 2827-2837, 2022 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-35694854

RESUMO

Conventional small molecular chemical drugs always have challenging limitations in cancer therapy due to their high systemic toxicity and low therapeutic efficacy. Nanotechnology has been applied in drug delivery, bringing new promising potential to realize effective cancer treatment. In this context, we develop here a new nanomicellar drug delivery platform generated by amphiphilic phosphorus dendrons (1-C17G3.HCl), which could form micelles for effective encapsulation of a hydrophobic anticancer drug doxorubicin (DOX) with a high drug loading content (42.4%) and encapsulation efficiency (96.7%). Owing to the unique dendritic rigid structure and surface hydrophilic groups, large steady void space of micelles can be created for drug encapsulation. The created DOX-loaded micelles with a mean diameter of 26.3 nm have good colloidal stability. Strikingly, we show that the drug-free micelles possess good intrinsic anticancer activity and act collectively with DOX to take down breast cancer cells in vitro and the xenografted tumor model in vivo through upregulation of Bax, PTEN, and p53 proteins for enhanced cell apoptosis. Meanwhile, the resulting 1-C17G3.HCl@DOX micelles significantly abolish the toxicity relevant to the free drug. The findings of this study demonstrate a unique nanomicelle-based drug delivery system created with the self-assembling amphiphilic phosphorus dendrons that may be adapted for chemotherapy of different cancer types.


Assuntos
Antineoplásicos , Neoplasias da Mama , Dendrímeros , Antineoplásicos/química , Neoplasias da Mama/tratamento farmacológico , Dendrímeros/química , Doxorrubicina/química , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Feminino , Humanos , Micelas , Fósforo
17.
PLoS Pathog ; 15(10): e1008079, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31603949

RESUMO

Interferon-inducible p200 family protein IFI204 was reported to be involved in DNA sensing, and subsequently induces the production of type I interferons and proinflammatory mediators. However, its function in the regulation of antiviral innate immune signaling pathway remains unclear. Here we reported a novel role of IFI204 that specifically inhibits the IRF7-mediated type I interferons response during viral infection. IFI204 and other p200 family proteins are highly expressed in mouse hepatitis coronavirus-infected bone marrow-derived dendritic cells. The abundant IFI204 could significantly interact with IRF7 in nucleus by its HIN domain and prevent the binding of IRF7 with its corresponding promoter. Moreover, other p200 family proteins that possess HIN domain could also inhibit the IRF7-mediated type I interferons. These results reveal that, besides the positive regulation function in type I interferon response at the early stage of DNA virus infection, the interferon-inducible p200 family proteins such as IFI204 could also negatively regulate the IRF7-mediated type I interferon response after RNA virus infection to avoid unnecessary host damage from hyper-inflammatory responses.


Assuntos
Infecções por Coronavirus/imunologia , Coronavirus/imunologia , Fator Regulador 7 de Interferon/metabolismo , Interferon Tipo I/imunologia , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Células 3T3 , Células A549 , Animais , Linhagem Celular , Infecções por Coronavirus/patologia , Células HEK293 , Humanos , Imunidade Inata/imunologia , Inflamação/imunologia , Inflamação/patologia , Fator Regulador 7 de Interferon/genética , Camundongos , Células RAW 264.7
18.
FASEB J ; 34(6): 7905-7914, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32282093

RESUMO

Hutchinson-Gilford progeria syndrome (HGPS) arises when a truncated form of farnesylated prelamin A accumulates at the nuclear envelope, leading to misshapen nuclei. Previous studies of adult Zmpste24-deficient mice, a mouse model of progeria, have reported a metabolic response involving inhibition of the mTOR (mammalian target of rapamycin) kinase and activation of autophagy. However, exactly how mTOR or autophagy is involved in progeria remains unclear. Here, we investigate this question by crossing Zmpste24+/- mice with mice hypomorphic in mTOR (mTOR△/+ ), or mice heterozygous in autophagy-related gene 7 (Atg7+/- ). We find that accumulation of prelamin A induces premature aging through mTOR overactivation and impaired autophagy in newborn Zmpste24-/- mice. Zmpste24-/- mice with genetically reduced mTOR activity, but not heterozygosity in Atg7, show extended lifespan. Moreover, mTOR inhibition partially restores autophagy and S6K1 activity. We also show that progerin interacts with the Akt phosphatase to promote full activation of the Akt/mTOR signaling pathway. Finally, although we find that genetic reduction of mTOR postpones premature aging in Zmpste24 KO mice, frequent embryonic lethality occurs. Together, our findings show that over-activated mTOR contributes to premature aging in Zmpste24-/- mice, and suggest a potential strategy in treating HGPS patients with mTOR inhibitors.


Assuntos
Senilidade Prematura/metabolismo , Lamina Tipo A/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Autofagia/fisiologia , Proteína 7 Relacionada à Autofagia/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Feminino , Fibroblastos/metabolismo , Células HEK293 , Humanos , Células MCF-7 , Masculino , Metaloendopeptidases/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Membrana Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Progéria/metabolismo , Transdução de Sinais/fisiologia
19.
Appl Microbiol Biotechnol ; 105(23): 8937-8949, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34694448

RESUMO

Methanogenesis is central to anaerobic digestion processes. The conversion of propionate as a key intermediate for methanogenesis requires syntrophic interactions between bacterial and archaeal partners. In this study, a series of methanogenic enrichments with propionate as the sole substrate were developed to identify microbial populations specifically involved in syntrophic propionate conversion. These rigorously controlled propionate enrichments exhibited functional stability with consistent propionate conversion and methane production; yet, the methanogenic microbial communities experienced substantial temporal dynamics, which has important implications on the understanding of mechanisms involved in microbial community assembly in anaerobic digestion. Syntrophobacter was identified as the most abundant and consistent bacterial partner in syntrophic propionate conversion regardless of the origin of the source culture, the concentration of propionate, or the temporal dynamics of the culture. In contrast, the methanogen partners involved in syntrophic propionate conversion lacked consistency, as the dominant methanogens varied as a function of process condition and temporal dynamics. Methanoculleus populations were specifically enriched as the syntrophic partner at inhibitory levels of propionate, likely due to the ability to function under unfavorable environmental conditions. Syntrophic propionate conversion was carried out exclusively via transformation of propionate into acetate and hydrogen in enrichments established in this study. Microbial populations highly tolerant of elevated propionate, represented by Syntrophobacter and Methanoculleus, are of great significance in understanding methanogenic activities during process perturbations when propionate accumulation is frequently encountered. Key points • Syntrophobacter was the most consistent bacterial partner in propionate metabolism. • Diverse hydrogenotrophic methanogen populations could serve as syntrophic partners. • Methanoculleus emerged as a methanogen partner tolerant of elevated propionate.


Assuntos
Euryarchaeota , Propionatos , Archaea , Metano , Methanomicrobiaceae
20.
Appl Opt ; 60(16): 4856-4860, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34143046

RESUMO

We demonstrate particle counting based on high-order Fano resonance (FR) in an optofluidic microcavity. The high-order FR excited by a thin fiber taper can penetrate the liquid core of a microcapillary. An optical pulse is generated due to the resonant spectrum shift when a particle crosses the microcavity. Analogous to other methods, such a pulse can be used for particle counting. The sampled particles of PS microspheres and super-absorbent polymer broken beads are used for particle-counting experiments. All results confirm the feasibility of such a counting method.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa