Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Materials (Basel) ; 15(9)2022 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-35591685

RESUMO

Concrete carbonation is known as a stochastic process. Its uncertainties mainly result from parameters that are not considered in prediction models. Parameter selection, therefore, is important. In this paper, based on 8204 sets of data, statistical methods and machine learning techniques were applied to choose appropriate influence factors in terms of three aspects: (1) the correlation between factors and concrete carbonation; (2) factors' influence on the uncertainties of carbonation depth; and (3) the correlation between factors. Both single parameters and parameter groups were evaluated quantitatively. The results showed that compressive strength had the highest correlation with carbonation depth and that using the aggregate-cement ratio as the parameter significantly reduced the dispersion of carbonation depth to a low level. Machine learning models manifested that selected parameter groups had a large potential in improving the performance of models with fewer parameters. This paper also developed machine learning carbonation models and simplified them to propose a practical model. The results showed that this concise model had a high accuracy on both accelerated and natural carbonation test datasets. For natural carbonation datasets, the mean absolute error of the practical model was 1.56 mm.

2.
Materials (Basel) ; 12(3)2019 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-30691057

RESUMO

Using carbon fiber reinforced polymer (CFRP) composites for enhancing the fatigue behavior of the steel structures will be an important application. As the most critical part, the fatigue behavior of the CFRP-to-steel bonded interface directly determines the strengthening effect of steel structures reinforced by CFRP. In this paper, a series of CFRP-to-steel double-shear specimens are performed in order to study the interfacial bond behavior between CFRP and steel under fatigue loading. Two parameters are considered: the upper bound value and the lower bound value of the fatigue loading. An analysis of test results indicates that the crack development rate increases with the increment of the stress ratio or stress level and the crack development process includes two phases: crack stable development phase and debonding failure phase. A calculation model is put forward to describe the relationship between the crack development rate and the stress level. Besides, it can be obtained from the test results that the fatigue lives of the specimens decrease with the increment of the stress level. The empirical formula of S-N curve based on the form of single logarithm formula is proposed and the fatigue limit under the experimental conditions in this paper is determined to be 0.343 by computational analysis.

3.
Materials (Basel) ; 12(13)2019 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-31277215

RESUMO

The use of new developed high-strength steel in concrete members can reduce steel bar congestion and construction costs. This research aims to study the behavior of concrete columns reinforced with new developed high-strength steel under eccentric loading. Ten reinforced concrete columns were fabricated and tested. The test variables were the transverse reinforcement amount and yield strength, eccentricity, and longitudinal reinforcement yield strength. The failure patterns were compression and tensile failure for columns subjected to small eccentricity and large eccentricity, respectively. The same level of post-peak deformability and ductility could only be obtained with a lower amount of transverse reinforcement when high-strength transverse reinforcements were used in columns subjected to small eccentricity. The high-strength longitudinal reinforcement improved the bearing capacity and post-peak deformability of the concrete columns. Furthermore, three different equivalent rectangular stress block (ERSB) parameters for predicting the bearing capacity of columns with high-strength steel are discussed based on test and simulated results. It is concluded that the China Code GB 50010-2010 overestimates the bearing capacity of columns with high-strength steel, whereas the bearing capacities computed using the America Code ACI 318-14 and Canada Code CSA A23.3-04 agree well with the test results.

4.
Materials (Basel) ; 11(3)2018 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-29495383

RESUMO

The objective of this paper was to explore the bond-slip relationship between carbon fiber-reinforced polymer (CFRP) sheets and concrete under cyclic loading through experimental and analytical approaches. Modified beam tests were performed in order to gain insight into the bond-slip relationship under static and cyclic loading. The test variables are the CFRP-to-concrete width ratio, and the bond length of the CFRP sheets. An analysis of the test results in this paper and existing test results indicated that the slope of the ascending segment of the bond-slip curve decreased with an increase in the number of load cycles, but the slip corresponding to the maximum shear stress was almost invariable as the number of load cycles increased. In addition, the rate of reduction in the slope of the ascending range of the bond-slip curve during cyclic loading decreased as the concrete strength increased, and increased as the load level or CFRP-to-concrete width ratio enhanced. However, these were not affected by variations in bond length if the residual bond length was longer than the effective bond length. A bilinear bond-slip model for CFRP sheets that are externally bonded to concrete under cyclic loading, which considered the effects of the cyclic load level, concrete strength, and CFRP-to-concrete ratio, was developed based on the existing static bond-slip model. The accuracy of this proposed model was verified by a comparison between this proposed model and test results.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa