Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mar Drugs ; 15(4)2017 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-28398223

RESUMO

Lycopene cyclases cyclize the open ends of acyclic lycopene (ψ,ψ-carotene) into ß- or ε-ionone rings in the crucial bifurcation step of carotenoid biosynthesis. Among all carotenoid constituents, ß-carotene (ß,ß-carotene) is found in all photosynthetic organisms, except for purple bacteria and heliobacteria, suggesting a ubiquitous distribution of lycopene ß-cyclase activity in these organisms. In this work, we isolated a gene (BfLCYB) encoding a lycopene ß-cyclase from Bangia fuscopurpurea, a red alga that is considered to be one of the primitive multicellular eukaryotic photosynthetic organisms and accumulates carotenoid constituents with both ß- and ε-rings, including ß-carotene, zeaxanthin, α-carotene (ß,ε-carotene) and lutein. Functional complementation in Escherichia coli demonstrated that BfLCYB is able to catalyze cyclization of lycopene into monocyclic γ-carotene (ß,ψ-carotene) and bicyclic ß-carotene, and cyclization of the open end of monocyclic δ-carotene (ε,ψ-carotene) to produce α-carotene. No ε-cyclization activity was identified for BfLCYB. Sequence comparison showed that BfLCYB shares conserved domains with other functionally characterized lycopene cyclases from different organisms and belongs to a group of ancient lycopene cyclases. Although B. fuscopurpurea also synthesizes α-carotene and lutein, its enzyme-catalyzing ε-cyclization is still unknown.


Assuntos
Carotenoides/genética , Carotenoides/metabolismo , Liases Intramoleculares/genética , Liases Intramoleculares/metabolismo , Rodófitas/genética , Rodófitas/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Clonagem Molecular/métodos , Escherichia coli/genética , Licopeno , Fotossíntese/fisiologia , Filogenia , Zeaxantinas/genética , Zeaxantinas/metabolismo , beta Caroteno/genética , beta Caroteno/metabolismo
3.
Plant Signal Behav ; 16(11): 1964847, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34405771

RESUMO

ORANGE (OR) is a member of the DnaJ-like zinc finger domain-containing protein family, of which all orthologs share a highly conserved quadruple repeat of the CxxCxxxG signatures at their C-termini. Dual subcellular localization and different interacting partner proteins have been reported for OR. In plastids, OR interacts with phytoene synthase, the entry enzyme for carotenoid biosynthesis, to promote chromoplast biogenesis and carotenoid accumulation in non-pigmented tissues. In the nucleus, OR interacts with the eukaryotic release factor eRF1-2 to regulate cell elongation in the petiole, and with the transcription factor TCP14 to repress the expression of Early Light-Induced Proteins (ELIPs) and chloroplast biogenesis in de-etiolating cotyledons. In this study, we demonstrated the E2 ubiquitin-conjugating enzyme UBC19 as a new interacting partner of OR. The lysine58 of OR was found to be ubiquitinated, and OR lost its nuclear localization and the capability in repressing ELIPs when lysine58 was substituted by alanine. Our findings raised the possibility that the ubiquitination by UBC19 is essential for the nuclear localization of OR.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Crescimento Celular , Núcleo Celular/genética , Núcleo Celular/metabolismo , Cloroplastos/metabolismo , Ubiquitina/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Ubiquitina/genética
4.
J Agric Food Chem ; 68(5): 1354-1363, 2020 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-31933364

RESUMO

Carotenoids are essential phytonutrients synthesized by all photosynthetic organisms. Acyclic lycopene is the first branching point for carotenoid biosynthesis. Lycopene ß- and ε-cyclases (LCYB and LCYE, respectively) catalyze the cyclization of its open ends and direct the metabolic flux into different downstream branches. Carotenoids of the ß,ß-branch (e.g., ß-carotene) are found in all photosynthetic organisms, but those of the ß,ε-branch (e.g., lutein) are generally absent in cyanobacteria, heterokonts, and some red algae. Although both LCYBs and LCYEs have been characterized from land plants, there are only a few reports on LCYs from cyanobacteria and algae. Here, we cloned four LCY genes from Porphyra umbilicalis and Pyropia yezoensis (susabi-nori) of Bangiales, the most primitive red algal order that synthesizes lutein. Our functional characterization in both Escherichia coli and Arabidopsis thaliana demonstrated that each species has a pair of LCYB and LCYE. Similar to LCYs from higher plants, red algal LCYBs cyclize both ends of lycopene, and their LCYEs only cyclize a single end. The characterization of LCYEs from red algae resolved the first bifurcation step toward ß-carotene and lutein biosynthesis. Our phylogenetic analysis suggests that LCYEs of the green lineage and the red algae originated separately during evolution.


Assuntos
Liases Intramoleculares/metabolismo , Luteína/metabolismo , Proteínas de Plantas/metabolismo , Rodófitas/enzimologia , Alga Marinha/enzimologia , Sequência de Aminoácidos , Liases Intramoleculares/química , Liases Intramoleculares/genética , Luteína/química , Licopeno/química , Licopeno/metabolismo , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Rodófitas/classificação , Rodófitas/genética , Rodófitas/metabolismo , Alga Marinha/classificação , Alga Marinha/genética , Alga Marinha/metabolismo , Alinhamento de Sequência
5.
J Agric Food Chem ; 67(15): 4300-4310, 2019 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-30908022

RESUMO

Carotenoids are essential phytonutrients for the human body. Higher plants usually synthesize and accumulate carotenoids in their leaves, flowers, and fruits. Most carotenoids have either two ß-rings on both ends or ß- and ε-rings separately on two ends of their molecules and are synthesized from the acyclic lycopene as the precursor. Lycopene ß- and ε-cyclases (LCYB and LCYE, respectively) catalyze the ß- and ε-cyclization of lycopene, respectively, and regulate the metabolic flux from lycopene to its downstream ß,ß-branches (by LCYB alone) and ß,ε-branches (by LCYE and LCYB). In this study, we identified and characterized genes for two LCYBs (CaLCYB1 and CaLCYB2), one LCYE (CaLCYE1), and a capsanthin/capsorubin synthase (CaCCS1) which is also able to ß-cyclize lycopene from the red pepper ( Capsicum annuum var. conoides) genome. By quantifying transcript abundances of these genes and contents of different carotenoid components in ripening fruits, we observed a correlation between the induction of both CaLCYBs and the accumulation of carotenoids of the ß,ß-branch during ripening. Although capsanthin was accumulated in ripened fruits, our quantification demonstrated a strong induction of CaCCS1 at the breaker stage, together with the simultaneous repression of CaLCYE1 and the decrease of lutein content, suggesting the involvement of CaCCS1 in competing against CaLCYE1 for synthesizing carotenoids of the ß,ß-branch. Our results provide important information for future metabolic engineering studies to manipulate carotenoid biosynthesis and accumulation in fruits.


Assuntos
Capsicum/metabolismo , Carotenoides/metabolismo , Licopeno/química , Licopeno/metabolismo , Capsicum/genética , Capsicum/crescimento & desenvolvimento , Ciclização , Frutas/genética , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Liases Intramoleculares/genética , Liases Intramoleculares/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
6.
J Agric Food Chem ; 66(44): 11691-11700, 2018 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-30339374

RESUMO

Pepper ( Capsicum annuum) fruits are a rich source of carotenoids. Geranylgeranyl diphosphate (GGPP) is the precursor for carotenoid biosynthesis and is produced by GGPP synthase (GGPPS), which belongs to the prenyl transferase (PTS) family. In this study, we identified from the pepper genome a total of eight PTS homologues. Our subcellular localization, enzymatic activity, and expression level analyses proved that among these homologues Capana04g000412 is the only functional GGPPS (CaGGPPS1) for carotenoid biosynthesis in pepper fruits. We demonstrated that CaGGPPS1 interacts with a catalytically inactive small subunit homologue protein CaSSUII, and such an interaction promotes CaGGPPS1 enzymatic activity. We also revealed a protein-protein interaction between CaSSUII and a putative phytoene synthase and the repression of carotenoid accumulation by silencing CaSSUII in pepper fruits. Taken together, our results suggest an essential contribution of the CaGGPPS1/CaSSUII interaction to carotenoid biosynthesis in ripening pepper fruits.


Assuntos
Capsicum/enzimologia , Carotenoides/biossíntese , Farnesiltranstransferase/metabolismo , Frutas/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Capsicum/genética , Capsicum/crescimento & desenvolvimento , Capsicum/metabolismo , Cromatografia Líquida de Alta Pressão , Dimerização , Farnesiltranstransferase/química , Farnesiltranstransferase/genética , Frutas/enzimologia , Frutas/genética , Frutas/metabolismo , Genoma de Planta , Proteínas de Plantas/química , Proteínas de Plantas/genética
7.
Sci Rep ; 6: 38315, 2016 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-27922066

RESUMO

Dragon's blood is a red resin mainly extracted from Dracaena plants, and has been widely used as a traditional medicine in East and Southeast Asia. The major components of dragon's blood are flavonoids. Owing to a lack of Dracaena plants genomic information, the flavonoids biosynthesis and regulation in Dracaena plants remain unknown. In this study, three cDNA libraries were constructed from the stems of D. cambodiana after injecting the inducer. Approximately 266.57 million raw sequencing reads were de novo assembled into 198,204 unigenes, of which 34,873 unique sequences were annotated in public protein databases. Many candidate genes involved in flavonoid accumulation were identified. Differential expression analysis identified 20 genes involved in flavonoid biosynthesis, 27 unigenes involved in flavonoid modification and 68 genes involved in flavonoid transport that were up-regulated in the stems of D. cambodiana after injecting the inducer, consistent with the accumulation of flavonoids. Furthermore, we have revealed the differential expression of transcripts encoding for transcription factors (MYB, bHLH and WD40) involved in flavonoid metabolism. These de novo transcriptome data sets provide insights on pathways and molecular regulation of flavonoid biosynthesis and transport, and improve our understanding of molecular mechanisms of dragon's blood formation in D. cambodiana.


Assuntos
Dracaena/genética , Flavonoides/biossíntese , Regulação da Expressão Gênica de Plantas , Extratos Vegetais/química , Proteínas de Plantas/genética , Transcriptoma , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Dracaena/metabolismo , Flavonoides/genética , Biblioteca Gênica , Ontologia Genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Medicina Tradicional , Anotação de Sequência Molecular , Extratos Vegetais/biossíntese , Extratos Vegetais/genética , Extratos Vegetais/isolamento & purificação , Proteínas de Plantas/metabolismo , Caules de Planta/genética , Caules de Planta/metabolismo , Repetições WD40
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa