Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
BMC Vet Res ; 20(1): 49, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326918

RESUMO

BACKGROUND: Avian pathogenic E. coli (APEC) can cause localized or systemic infections, collectively known as avian colibacillosis, resulting in huge economic losses to poultry industry globally per year. In addition, increasing evidence indicates that long non-coding RNAs (lncRNAs) play a critical role in regulating host inflammation in response to bacterial infection. However, the role of lncRNAs in the host response to APEC infection remains unclear. RESULTS: Here, we found 816 differentially expressed (DE) lncRNAs and 1,798 DE mRNAs in APEC infected chicken macrophages by RNAseq. The identified DE lncRNA-mRNAs were involved in Toll like receptor signaling pathway, VEGF signaling pathway, fatty acid metabolism, phosphatidylinositol signaling system, and other types of O-glycan biosynthesis. Furthermore, we found the novel lncRNA TCONS_00007391 as an important immune regulator in APEC infection was able to regulate the inflammatory response by directly targeting CD86. CONCLUSION: These findings provided a better understanding of host response to APEC infection and also offered the potential drug targets for therapy development against APEC infection.


Assuntos
Infecções por Escherichia coli , Doenças das Aves Domésticas , RNA Longo não Codificante , Animais , Escherichia coli/genética , Galinhas/genética , Galinhas/microbiologia , RNA Longo não Codificante/genética , RNA Mensageiro/genética , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/veterinária , Macrófagos , Doenças das Aves Domésticas/genética , Doenças das Aves Domésticas/microbiologia
2.
Food Chem ; 394: 133412, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-35728468

RESUMO

The lipid matrix plays a key role in solid lipid nanoparticles (SLNs) embedding active ingredients. To investigate the influence of lipid matrix structure on arrangement, release, and stability of solid lipid nanoparticles, three phytosterols formulations with different carrier glycerides [glycerol monostearate (GMS), glycerol distearate (GDS), and glycerol tristearate (GTS)] were prepared and evaluated. X-ray diffraction and differential scanning calorimetry revealed the lowest crystallinity of phytosterols in the GMS matrix, corresponding to the maximum bioaccessibility (40.2%) in vitro experiments. Sustained release and better stability were observed from GDS and GTS matrices, which could be attributed to strong molecular interactions or a core-rich structure inside the nanoparticles. Molecular dynamics simulations demonstrated that the affinity between phytosterols and glycerides decreased in the order GDS > GTS > GMS, as well as explaining the release and storage capacities of the three nanoparticles. This study would facilitate the rational design of SLNs in functional foods.


Assuntos
Nanopartículas , Fitosteróis , Varredura Diferencial de Calorimetria , Portadores de Fármacos/química , Glicerídeos/química , Glicerol , Lipídeos/química , Lipossomos , Nanopartículas/química , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa