Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Cell Mol Life Sci ; 79(7): 380, 2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35750966

RESUMO

Upon stress challenges, proteins/RNAs undergo liquid-liquid phase separation (LLPS) to fine-tune cell physiology and metabolism to help cells adapt to adverse environments. The formation of LLPS has been recently linked with intracellular pH, and maintaining proper intracellular pH homeostasis is known to be essential for the survival of organisms. However, organisms are constantly exposed to diverse stresses, which are accompanied by alterations in the intracellular pH. Aging processes and human diseases are also intimately linked with intracellular pH alterations. In this review, we summarize stress-, aging-, and cancer-associated pH changes together with the mechanisms by which cells regulate cytosolic pH homeostasis. How critical cell components undergo LLPS in response to pH alterations is also discussed, along with the functional roles of intracellular pH fluctuation in the regulation of LLPS. Further studies investigating the interplay of pH with other stressors in LLPS regulation and identifying protein responses to different pH levels will provide an in-depth understanding of the mechanisms underlying pH-driven LLPS in cell adaptation. Moreover, deciphering aging and disease-associated pH changes that influence LLPS condensate formation could lead to a deeper understanding of the functional roles of biomolecular condensates in aging and aging-related diseases.


Assuntos
Envelhecimento , Proteínas , Fenômenos Fisiológicos Celulares , Humanos , Concentração de Íons de Hidrogênio
2.
Int J Mol Sci ; 24(14)2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37511037

RESUMO

Protein aggregation is one of the hallmarks of aging and aging-related diseases, especially for the neurodegenerative diseases (NDs) such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), Amyotrophic lateral sclerosis (ALS), and others. In these diseases, many pathogenic proteins, such as amyloid-ß, tau, α-Syn, Htt, and FUS, form aggregates that disrupt the normal physiological function of cells and lead to associated neuronal lesions. Protein aggregates in NDs are widely recognized as one of the important targets for the treatment of these diseases. Natural products, with their diverse biological activities and rich medical history, represent a great treasure trove for the development of therapeutic strategies to combat disease. A number of in vitro and in vivo studies have shown that natural products, by virtue of their complex molecular scaffolds that specifically bind to pathogenic proteins and their aggregates, can inhibit the formation of aggregates, disrupt the structure of aggregates and destabilize them, thereby alleviating conditions associated with NDs. Here, we systematically reviewed studies using natural products to improve disease-related symptoms by reducing or inhibiting the formation of five pathogenic protein aggregates associated with NDs. This information should provide valuable insights into new directions and ideas for the treatment of neurodegenerative diseases.


Assuntos
Doença de Alzheimer , Produtos Biológicos , Doenças Neurodegenerativas , Doença de Parkinson , Humanos , Doenças Neurodegenerativas/metabolismo , Agregados Proteicos , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico
3.
BMC Genomics ; 23(1): 514, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35840887

RESUMO

BACKGROUND: Ammonium is an important raw material for biomolecules and life activities, and the toxicity of ammonium is also an important ecological and agricultural issue. Ammonium toxicity in yeast has only recently been discovered, and information on its mechanism is limited. In recent years, environmental pollution caused by nitrogen-containing wastewater has been increasing. In addition, the use of yeast in bioreactors to produce nitrogen-containing compounds has been developed. Therefore, research on resistance mechanisms that allow yeast to grow under conditions of high concentrations of ammonium has become more and more important. RESULTS: To further understand the resistance mechanism of yeast to grow under high concentration of ammonium, we used NH4Cl to screen a yeast non-essential gene-deletion library. We identified 61 NH4Cl-sensitive deletion mutants from approximately 4200 mutants in the library, then 34 of them were confirmed by drop test analysis. Enrichment analysis of these 34 genes showed that biosynthesis metabolism, mitophagy, MAPK signaling, and other pathways may play important roles in NH4Cl resistance. Transcriptome analysis under NH4Cl stress revealed 451 significantly upregulated genes and 835 significantly downregulated genes. The genes are mainly enriched in: nitrogen compound metabolic process, cell wall, MAPK signaling pathway, mitophagy, and glycine, serine and threonine metabolism. CONCLUSIONS: Our results present a broad view of biological pathways involved in the response to NH4Cl stress, and thereby advance our understanding of the resistance genes and cellular transcriptional regulation under high concentration of ammonium.


Assuntos
Compostos de Amônio , Saccharomyces cerevisiae , Compostos de Amônio/toxicidade , Genoma Fúngico , Nitrogênio/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transcriptoma
4.
Int J Mol Sci ; 23(23)2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36499653

RESUMO

The anaphase-promoting complex/cyclosome (APC/C) is a complicated cellular component that plays significant roles in regulating the cell cycle process of eukaryotic organisms. The spatiotemporal regulation mechanisms of APC/C in distinct cell cycle transitions are no longer mysterious, and the components of this protein complex are gradually identified and characterized. Given the close relationship between the cell cycle and lifespan, it is urgent to understand the roles of APC/C in lifespan regulation, but this field still seems to have not been systematically summarized. Furthermore, although several reviews have reported the roles of APC/C in cancer, there are still gaps in the summary of its roles in other age-related diseases. In this review, we propose that the APC/C is a novel cellular ageing regulator based on its indispensable role in the regulation of lifespan and its involvement in age-associated diseases. This work provides an extensive review of aspects related to the underlying mechanisms of APC/C in lifespan regulation and how it participates in age-associated diseases. More comprehensive recognition and understanding of the relationship between APC/C and ageing and age-related diseases will increase the development of targeted strategies for human health.


Assuntos
Proteínas de Ciclo Celular , Senescência Celular , Humanos , Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Proteínas de Ciclo Celular/metabolismo , Ciclo Celular , Senescência Celular/genética
5.
BMC Genomics ; 20(1): 589, 2019 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-31315555

RESUMO

BACKGROUND: Puccinellia tenuiflora is the most saline-alkali tolerant plant in the Songnen Plain, one of the three largest soda saline-alkali lands worldwide. Here, we investigated the physicochemical properties of saline-alkali soils from the Songnen Plain and sequenced the transcriptomes of germinated P. tenuiflora seedlings under long-term treatment (from seed soaking) with saline-alkali soil extracts. RESULTS: We found that the soils from Songnen Plain were reasonably rich in salts and alkali; moreover, the soils were severely deficient in nitrogen [N], phosphorus [P], potassium [K] and several other mineral elements. This finding demonstrated that P. tenuiflora can survive from not only high saline-alkali stress but also a lack of essential mineral elements. To explore the saline-alkali tolerance mechanism, transcriptional analyses of P. tenuiflora plants treated with water extracts from the saline-alkali soils was performed. Interestingly, unigenes involved in the uptake of N, P, K and the micronutrients were found to be significantly upregulated, which indicated the existence of an efficient nutrition-uptake system in P. tenuiflora. Compared with P. tenuiflora, the rice Oryza sativa was hypersensitive to saline-alkali stress. The results obtained using a noninvasive microtest techniques confirmed that the uptake of NO3- and NH4+ and the regulatory flux of Na+ and H+ were significantly higher in the roots of P. tenuiflora than in those of O. sativa. In the corresponding physiological experiments, the application of additional nutrition elements significantly eliminated the sensitive symptoms of rice to saline-alkali soil extracts. CONCLUSIONS: Our results imply that the survival of P. tenuiflora in saline-alkali soils is due to a combination of at least two regulatory mechanisms and the high nutrient uptake capacity of P. tenuiflora plays a pivotal role in its adaptation to those stress. Taken together, our results highlight the role of nutrition uptake in saline-alkali stress tolerance in plants.


Assuntos
Álcalis/farmacologia , Poluição Ambiental , Germinação , Poaceae/fisiologia , Tolerância ao Sal , Sementes/fisiologia , Solo/química , Adaptação Fisiológica , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Oryza/crescimento & desenvolvimento , Raízes de Plantas/fisiologia , Poaceae/genética , Poaceae/crescimento & desenvolvimento , Poaceae/metabolismo , Estresse Fisiológico
6.
Plant Physiol ; 176(1): 282-294, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28821590

RESUMO

Chloroplasts are multifunctional organelles whose morphology is affected by environmental stresses. Although the three-dimensional (3D) architecture of thylakoid membranes has been reported previously, a 3D visualization of chloroplast under stress has not been explored. In this work, we used a positive-strand RNA ((+)RNA) virus, barley stripe mosaic virus (BSMV) to observe chloroplast structural changes during infection by electron tomography. The analyses revealed remodeling of the chloroplast membranes, characterized by the clustering of outer membrane-invaginated spherules in inner membrane-derived packets. Diverse morphologies of cytoplasmic invaginations (CIs) were evident with spherules at the periphery and different sized openings connecting the CIs to the cytoplasm. Immunoelectron microscopy of these viral components verified that the aberrant membrane structures were sites for BSMV replication. The BSMV αa replication protein localized at the surface of the chloroplasts and played a prominent role in eliciting chloroplast membrane rearrangements. In sum, our results have revealed the 3D structure of the chloroplasts induced by BSMV infection. These findings contribute to our understanding of chloroplast morphological changes under stress conditions and during assembly of plant (+)RNA virus replication complexes.


Assuntos
Cloroplastos/ultraestrutura , Cloroplastos/virologia , Doenças das Plantas/virologia , Vírus de Plantas/fisiologia , Imageamento Tridimensional , Membranas Intracelulares/metabolismo , Membranas Intracelulares/ultraestrutura , RNA Viral/metabolismo , Nicotiana/virologia , Proteínas Virais/metabolismo
7.
Biochem Biophys Res Commun ; 493(1): 708-717, 2017 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-28864412

RESUMO

The subcellular localization of polyQ-expanded huntingtin exon1 (Httex1) modulates polyQ toxicity in models of Huntington's disease. Using genome-wide screens in a yeast model system, we report that the ribosome quality control (RQC) machinery, recently implicated in neurodegeneration, is a key determinant for the nucleocytoplasmic distribution of Httex1-103Q. Deletion of the RQC genes, LTN1 or RQC1, caused the accumulation of Httex1-103Q in the nucleus through a process that required the CAT-tail tagging activity of Rqc2 and transport via the nuclear pore complex. We provide evidence that nuclear accumulation of Httex1-103Q enhances its cytotoxicity, suggesting that the RQC machinery plays an important role in protecting cells against the adverse effects of polyQ expansion proteins.


Assuntos
Núcleo Celular/metabolismo , Éxons/genética , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Peptídeos/genética , Peptídeos/metabolismo , Ribossomos/metabolismo , Transporte Ativo do Núcleo Celular/fisiologia , Humanos , Proteínas de Transporte Nucleocitoplasmático/genética , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Ligação Proteica
8.
J Virol ; 89(12): 6184-95, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25833056

RESUMO

UNLABELLED: All well-characterized positive-strand RNA viruses[(+)RNA viruses] induce the formation of host membrane-bound viral replication complexes (VRCs), yet the underlying mechanism and machinery for VRC formation remain elusive. We report here the biogenesis and topology of the Beet black scorch virus (BBSV) replication complex. Distinct cytopathological changes typical of endoplasmic reticulum (ER) aggregation and vesiculation were observed in BBSV-infected Nicotiana benthamiana cells. Immunogold labeling of the auxiliary replication protein p23 and double-stranded RNA (dsRNA) revealed that the ER-derived membranous spherules provide the site for BBSV replication. Further studies indicated that p23 plays a crucial role in mediating the ER rearrangement. Three-dimensional electron tomographic analysis revealed the formation of multiple ER-originated vesicle packets. Each vesicle packet enclosed a few to hundreds of independent spherules that were invaginations of the ER membranes into the lumen. Strikingly, these vesicle packets were connected to each other via tubules, a rearrangement event that is rare among other virus-induced membrane reorganizations. Fibrillar contents within the spherules were also reconstructed by electron tomography, which showed diverse structures. Our results provide the first, to our knowledge, three-dimensional ultrastructural analysis of membrane-bound VRCs of a plant (+)RNA virus and should help to achieve a better mechanistic understanding of the organization and microenvironment of plant (+)RNA virus replication complexes. IMPORTANCE: Assembly of virus replication complexes for all known positive-strand RNA viruses depends on the extensive remodeling of host intracellular membranes. Beet black scorch virus, a necrovirus in the family Tombusviridae, invaginates the endoplasmic reticulum (ER) membranes to form spherules in infected cells. Double-stranded RNAs, the viral replication intermediate, and the viral auxiliary replication protein p23 are all localized within such viral spherules, indicating that these are the sites for generating progeny viral RNAs. Furthermore, the BBSV p23 protein could to some extent reorganize the ER when transiently expressed in N. benthamiana. Electron tomographic analysis resolves the three-dimensional (3D) architecture of such spherules, which are connected to the cytoplasm via a neck-like structure. Strikingly, different numbers of spherules are enclosed in ER-originated vesicle packets that are connected to each other via tubule-like structures. Our results have significant implications for further understanding the mechanisms underlying the replication of positive-strand RNA viruses.


Assuntos
Retículo Endoplasmático/virologia , Interações Hospedeiro-Patógeno , Tombusviridae/fisiologia , Proteínas Virais/metabolismo , Replicação Viral , Tomografia com Microscopia Eletrônica , Retículo Endoplasmático/ultraestrutura , Microscopia Imunoeletrônica , Nicotiana , Tombusviridae/ultraestrutura
9.
Front Cell Dev Biol ; 11: 1198794, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37397261

RESUMO

Metabolism plays an important role in regulating aging at several levels, and metabolic reprogramming is the main driving force of aging. Due to the different metabolic needs of different tissues, the change trend of metabolites during aging in different organs and the influence of different levels of metabolites on organ function are also different, which makes the relationship between the change of metabolite level and aging more complex. However, not all of these changes lead to aging. The development of metabonomics research has opened a door for people to understand the overall changes in the metabolic level in the aging process of organisms. The omics-based "aging clock" of organisms has been established at the level of gene, protein and epigenetic modifications, but there is still no systematic summary at the level of metabolism. Here, we reviewed the relevant research published in the last decade on aging and organ metabolomic changes, discussed several metabolites with high repetition rate, and explained their role in vivo, hoping to find a group of metabolites that can be used as metabolic markers of aging. This information should provide valuable information for future diagnosis or clinical intervention of aging and age-related diseases.

10.
Materials (Basel) ; 16(6)2023 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-36984137

RESUMO

Steel fiber-reinforced ultra-high-performance concrete (UHPC) is becoming an important type of concrete reinforcement. After mixing with the reinforced steel fibers, the UHPC has perfect flex resistance, shear strength, crack resistance, shock resistance, and anti-seepage. In this study, the influence of straight, corrugated, and hooked brass-coated steel fibers (BCSFs) on the microstructure, mechanical properties, and crack expansion mechanism of ultra-high-performance concrete (UHPC) with varying content of 1-6 wt.% under different curing times were investigated. Field emission scanning electron microscopy and energy dispersive X-ray spectrometry were employed to characterize the microstructure of the BCSF-reinforced UHPC mix specimens. X-ray computed tomography was employed to determine the porosity of the BCSF-reinforced UHPC mix specimens. The obtained results indicate the flexural strength and compressive strength of BCSF-reinforced UHPC mix specimens are enhanced, along with increasing the content of BCSFs reinforcement with different shapes (straight, corrugated, and hooked). The embedded BCSFs play a major role in the adhesive property and stress transfer of the BCSFs-UHPC matrix interface. Different from many studies, the flexural strength of mix UHPC with straight BCSFs is higher than those with corrugated and hooked BCSFs. However, the compressive strength of UHPC with corrugated BCSFs is higher than those with straight and hooked BCSFs. The flexural strength of mix UHPC with 6 wt.% straight BCSFs at 28 days reaches the maximum value of 26.2 MPa, and the compressive strength of UHPC with 6 wt.% corrugated BCSFs at 28 days reaches the maximum value of 142.3 MPa. With the increase in straight BCSF content from 1 wt.% to 6 wt.%, the porosity in mix UHPC reduces gradually from 18.4% to 8.3%. The length of average crack spacing is dependent on the straight BCSF content. With the increase in straight BCSF content from 1 wt.% to 6 wt.%, the average crack length reduces gradually from 34.2 mm to 12.1 mm, and the average crack width reduces gradually from 0.78 mm to less than 0.1 mm. During crack extension, part of the energy in the UHPC mixture specimen with the 6 wt.% BCSF content flows into the crack tip region converted into the work dissipated during the bridging process. The crack propagation resistance of the UHPC mixture with straight BCSFs was improved compared with those with corrugated and hooked BCSFs. The bond strength between the BCSFs and UHPC matrix was enhanced by using vibrational mixing, and the brass film coated on the BCSFs contributes to increase the flexural and compressive strength of the UHPC mixture.

11.
Materials (Basel) ; 16(23)2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38068183

RESUMO

Severe erosion wear is found on valve spools, which threatens the safety and reliability of these units. The use of the plasma beam spraying surfacing method can significantly improve the corrosion resistance and sealing performance of hydraulic valve spools, reduce material waste, and reduce maintenance costs. The effects of the co-addition of CeO2 and SiC particles on the morphology, surface cracks, microstructure, precipitated phases, and wear property of plasma-beam-sprayed Fe55-based coatings on 1025 steel were investigated using OM, EDS, ultra-deep field microscopy, and a wet sand rubber wheel friction tester, respectively. The dendrite exhibited a directional growth pattern perpendicular to the substrate and the transitional states of the microstructure with the co-addition of CeO2 and SiC particles. CeO2 or SiC reduced the liquid phase diffusion coefficient DL of Cr and C and resulted in a decrease in the G/R ratio. The dendrites changed into equiaxed grains. The main phase composition of the Fe55 welding layer was Cr7C3, γ-Fe. The martensite in the surfacing layer and the carbides formed Cr7C3, which can improve the hardness of the surfacing layer. The grain boundaries consisted mainly of a reticular eutectic structure. The uniform distribution of the Cr7C3 hard phase in the Fe55+1.5 wt% SiC+0.01 wt% CeO2 resulted in a uniformly worn surface. The sub-wear mechanisms during the friction process were micro-ploughing and micro-cutting. The hardness and toughness of Fe55+1.5 wt% SiC+0.01 wt% CeO2 were well-matched, avoiding excessive micro-cutting and microplastic deformation. A low content of CeO2 could lead to the formation of equiaxed grain and effectively improve the uniformity of the microstructure. The wear-resistant layer of Fe55+1.5 wt% SiC+0.01 wt% CeO2 can effectively improve the service life and long-term sealing performance of the valve spools.

12.
Materials (Basel) ; 16(20)2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37895616

RESUMO

Understanding the infiltration and solidification processes of liquid 5083Al alloy into Al2O3 three-dimensional reticulated porous ceramic (Al2O3(3D) RPC) is essential for optimizing the microstructure and properties of Al2O3(3D)/5083Al interpenetrating phase composites (IPCs) prepared by low-pressure infiltration process (LPIP). This study employs ProCAST software to simulate the infiltration and solidification processes of liquid 5083Al with pouring velocities (PV) of 0.4 m/s infiltrating into Al2O3(3D) RPC preforms with varying porosities at different pouring temperatures (PT) to prepare Al2O3(3D)/5083Al IPCs using LPIP. The results demonstrate that pore diameter of Al2O3(3D) RPC preforms and PT of liquid 5083Al significantly influence the of the infiltration. Solidification process analysis reveals that the Al2O3(3D) RPC preform with smaller pore diameters allows the lower pouring velocity of 5083Al to solidify faster compared to the preform with larger pore diameters. Al2O3(3D)/5083Al IPCs were prepared successfully from Al2O3(3D) RPC porosity of 15 PPI with liquid 5083Al at PV 0.4 m/s and PT 800 °C using LPIP, resulting in nearly fully dense composites, where both Al2O3(3D) RPCs and 5083Al interpenetrate throughout the microstructure. The infiltration and solidification defects were reduced under air pressure of 0.3 MPa (corresponding to PV of 0.4 m/s) during LPIP. Finite volume method simulations are in good agreement with experimental data, validating the suitability of the simplified model for Al2O3(3D) RPCs in the infiltration simulation.

13.
Front Microbiol ; 14: 1285796, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38033574

RESUMO

Carbonate stress has profound impacts on both agricultural and industrial production. Although a number of salinity-tolerant genes have been reported and applied in plants, there is a lack of research on the role of cell wall-related genes in resistance to carbonate. Likewise, in industry, current strategies have not been able to more effectively address the conflict between stress-induced microalgal biofuel accumulation and microalgal growth inhibition. It is of great significance to study the adaptation mechanism of carbonate-tolerant organisms and to explore related genes for future genetic modification. In this study, the role of the cell wall in the NaHCO3-tolerant chlorella JB17 was investigated. We found that JB17 possesses a relatively thick cell wall with a thickness of 300-600 nm, which is much higher than that of the control chlorella with a thickness of about 100 nm. Determination of the cell wall polysaccharide fractions showed that the cellulose content in the JB17 cell wall increased by 10.48% after NaHCO3 treatment, and the decrease in cellulose levels by cellulase digestion inhibited its resistance to NaHCO3. Moreover, the saccharide metabolome revealed that glucose, rhamnose, and trehalose levels were higher in JB17, especially rhamnose and trehalose, which were almost 40 times higher than in control chlorella. Gene expression detection identified an up-regulated expressed gene after NaHCO3 treatment, JbKOBITO1, overexpression of which could improve the NaHCO3 tolerance of Chlamydomonas reinhardtii. As it encodes a glycosyltransferase-like protein that is involved in cellulose synthesis, the strong tolerance of JB17 to NaHCO3 may be partly due to the up-regulated expression of JbKOBITO 1 and JbKOBITO 1-mediated cellulose accumulation. The above results revealed a critical role of cellulose in the NaHCO3 resistance of JB17, and the identified NaHCO3-tolerance gene will provide genetic resources for crop breeding in saline-alkali soils and for genetic modification of microalgae for biofuel production.

14.
Contrast Media Mol Imaging ; 2022: 6027965, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35386725

RESUMO

In order to evaluate the application of EEG intelligent detection in gynecological anesthesia depth, the application of ANGEL-6000 EEG depth monitor in laparoscopic gynecological anesthesia was proposed. This method was applied to 60 patients who underwent elective laparoscopic gynecological surgery in our hospital from February to August 2016. Inclusion criteria were ASA i ∼ ii; the average age was (37.8 ± 6.6) years from 20 to 50 years old; the average body weight was (51.53 ± 3.87) kg; conscious and no communication barriers; and patients without instrument ventilation. The patients were divided into observation group and control group according to the random number table method, with 30 patients in each group. The two groups were anesthetized with the same anesthetic drugs, and their consciousness index was monitored. IoC values were recorded before induction of anesthesia (T0), 5 min after intubation (T1), 5 min after operation (T2), intraoperative exploration (T3), at the end of operation (T4), 1 min before extubation (T5), and 5 min after extubation (T6). The dosage of anesthetic drugs, operation time, extubation time, and operation time of the two groups were statistically analyzed. Compared with the operation time of patients in the two groups, the extubation time, awake time, and time out of the operating room of patients in the control group were longer than the observation group. The IoC values of patients in the control group at T0 and T6 time points were lower than those in the observation group at each time point from T1 to T5. Comparison of perioperative dose of remifentanil and atracurium between the two groups was performed. The control group used more propofol dose in perioperative period. The application of neuroelectric signal in laparoscopic gynecological surgery to detect changes in perioperative IoC value can well reflect the level of consciousness of patients and reflect the effect of perioperative stimulation at different time points on the EEG of patients in real time.


Assuntos
Anestesia Obstétrica , Ginecologia , Obstetrícia , Propofol , Adulto , Humanos , Pessoa de Meia-Idade , Remifentanil , Adulto Jovem
15.
Front Microbiol ; 13: 831973, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35495664

RESUMO

Sodium bicarbonate (NaHCO3) is an important inorganic salt. It is not only widely used in industrial production and daily life, but is also the main stress in alkaline saline soil. NaHCO3 has a strong ability to inhibit the growth of fungi in both natural environment and daily application. However, the mechanism by which fungi respond to NaHCO3 stress is not fully understood. To further clarify the toxic mechanisms of NaHCO3 stress and identify the specific cellular genes and pathways involved in NaHCO3 resistance, we performed genome-wide screening with NaHCO3 using a Saccharomyces cerevisiae deletion mutant library. A total of 33 deletion mutants with NaHCO3 sensitivity were identified. Compared with wild-type strains, these mutants had significant growth defects in the medium containing NaHCO3. Bioinformatics analysis found that the corresponding genes of these mutants are mainly enriched in the cell cycle, mitophagy, cell wall integrity, and signaling pathways. Further study using transcriptomic analysis showed that 309 upregulated and 233 downregulated genes were only responded to NaHCO3 stress, when compared with yeast transcriptomic data under alkaline and saline stress. Upregulated genes were mainly concentrated in amino acid metabolism, steroid biosynthesis, and cell wall, while downregulated genes were enriched in various cellular metabolisms. In summary, we have identified the cellular pathways and key genes that respond to NaHCO3 stress in the whole genome, providing resource and direction for understanding NaHCO3 toxicity and cellular resistance mechanisms.

16.
Front Plant Sci ; 13: 1004732, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36340339

RESUMO

Mariner-like elements (MLEs) are promising tools for gene cloning, gene expression, and gene tagging. We have characterized two MLE transposons from moso bamboo, Ppmar1 and Ppmar2. Ppmar2, is smaller in size and has higher natural activities, thus making it a more potential genomic tool compared to Ppmar1. Using a two-component system consisting of a transposase expression cassette and a non-autonomous transposon cotransformed in yeast, we investigated the transposition activity of Ppmar2 and created hyperactive transposases. Five out of 19 amino acid mutations in Ppmar2 outperformed the wild-type in terms of catalytic activities, especially with the S347R mutant having 6.7-fold higher transposition activity. Moreover, 36 yeast mutants with single-gene deletion were chosen to screen the effects of the host factors on Ppmar2NA transposition. Compared to the control strain (his3Δ), the mobility of Ppmar2 was greatly increased in 9 mutants and dramatically decreased in 7 mutants. The transposition ability in the efm1Δ mutant was 15-fold higher than in the control, while it was lowered to 1/66 in the rtt10Δ mutant. Transcriptomic analysis exhibited that EFM1 defection led to the significantly impaired DDR2, HSP70 expression and dramatically boosted JEN1 expression, whereas RTT10 defection resulted in significantly suppressed expression of UTP20, RPA190 and RRP5. Protein methylation, chromatin and RNA transcription may affect the Ppmar2NA transposition efficiency in yeast. Overall, the findings provided evidence for transposition regulation and offered an alternative genomic tool for moso bamboo and other plants.

17.
Materials (Basel) ; 16(1)2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36614427

RESUMO

In this study, an Al2O33D/5083 Al composite was fabricated by infiltrating a molten 5083 Al alloy into a three-dimensional alumina reticulated porosity ceramics skeleton preform (Al2O33D) using a pressureless infiltration method. The corrosion resistance of 5083 Al alloy and Al2O33D/5083 Al in NaCl solution were compared via electrochemical impedance spectroscopy (EIS), dynamic polarization potential (PDP), and neutral salt spray (NSS) tests. The microstructure of the two materials were investigated by 3D X-ray microscope and scanning electron microscopy aiming at understanding the corrosion mechanisms. Results show that an Al2O33D/5083 Al composite consists of interpenetrating structure of 3D-continuous matrices of continuous networks 5083 Al alloy and Al2O33D phase. A large area of strong interfaces of 5083 Al and Al2O33D exist in the Al2O33D/5083 Al composite. The corrosion development process can be divided into the initial period, the development period, and the stability period. Al2O33D used as reinforcement in Al2O33D/5083 Al composite improves the corrosion resistance of Al2O33D/5083 Al composite via electrochemistry tests. Thus, the corrosion resistance of Al2O33D/5083 Al is higher than that of 5083 Al alloy. The NSS test results indicate that the corrosion resistance of Al2O33D/5083 Al was lower than that of 5083 Al alloy during the initial period, higher than that of 5083 Al alloy during the development period, and there was no obvious difference in corrosion resistance during the stability period. It is considered that the elements in 5083 Al alloy infiltrated into the Al2O33D/5083 Al composite are segregated, and the uniform distribution of the segregated elements leads to galvanic corrosion during the corrosion initial period. The perfect combination of interfaces of Al2O33D and the 5083 Al alloy matrix promotes excellent corrosion resistance during the stability period.

18.
Methods Mol Biol ; 2196: 85-95, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32889715

RESUMO

Phenomic studies can provide a systemic overview of the network of interactions between phenotypes, genotypes, and environmental factors. Yeast (Saccharomyces cerevisiae) is one of the most important model organisms for phenomic studies due to the availability of a large variety of genome-wide strain collections. We describe a detailed protocol for performing a yeast phenomic screen for evaluation of protein colocalization via a genome-wide imaging-based screening approach utilizing a GFP-tagged yeast strain collection.


Assuntos
Genoma Fúngico , Estudo de Associação Genômica Ampla , Genômica , Imagem Molecular , Fenômica , Saccharomyces cerevisiae/genética , Interpretação Estatística de Dados , Regulação Fúngica da Expressão Gênica , Genes Reporter , Estudo de Associação Genômica Ampla/métodos , Genômica/métodos , Ensaios de Triagem em Larga Escala , Processamento de Imagem Assistida por Computador , Imagem Molecular/métodos , Fenômica/métodos , Saccharomyces cerevisiae/metabolismo
19.
Methods Mol Biol ; 2196: 223-228, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32889724

RESUMO

Yeast (Saccharomyces cerevisiae) has been used as one of the main model systems for studying molecular mechanisms underlying cellular aging. A major technical challenge in studying aging in yeast is the isolation of aged cells from exponentially growing cell cultures, since aged cells in such cultures are rare. Several methods for isolating aged cells have been developed to achieve this. Here, we describe a biotin-streptavidin affinity purification protocol for isolating aged yeast cells. It consists of three main steps: biotinylation of yeast cells, culturing cells to the desired age, and harvesting the aged cells using streptavidin-coated magnetic microbeads. The isolated aged cells can be used for microscopy, biochemistry, or molecular biology analysis.


Assuntos
Biotina , Senescência Celular , Estreptavidina , Leveduras/isolamento & purificação , Leveduras/fisiologia , Biotina/química , Biotinilação , Ligação Proteica , Coloração e Rotulagem , Estreptavidina/química
20.
Front Cell Dev Biol ; 9: 671780, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33981709

RESUMO

Stress granules (SGs) are highly dynamic cytoplasmic foci formed in response to stress. The formation of SGs is reported to be regulated by diverse post-translational protein modifications (PTMs). Among them, ADP-ribosylation is of emerging interest due to its recently identified roles in SG organization. In this review, we summarized the latest advances on the roles of poly(ADP-ribose) (PAR) in the regulation of SG formation and dynamics, including its function in modulating nucleocytoplasmic trafficking and SG recruitment of SG components, as well as its effects on protein phase separation behavior. Moreover, the functional role of PAR chain diversity on dynamic of SG composition is also introduced. Potential future developments on investigating global ADP-ribosylation networks, individual roles of different PARPs, and interactions between ADP-ribosylation and other PTMs in SGs are also discussed.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa