Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Membranes (Basel) ; 13(3)2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36984692

RESUMO

Single crystalline ZSM-5 ZNs with thicknesses around 6 nm were obtained by secondary growth of silicalite nanoparticles using diquaternary bis-1,5(tripropyl ammonium) pentamethylene diiodide (dC5) as a structure-directing agent (SDA). The dC5 could be effectively removed from the ZN pores by either high-temperature calcination or UV irradiation in air at room temperature but not by the piranha solution treatment. Ultrathin ZN-laminated membranes (ZNLMs) were fabricated by sandwiching a UV-activated multilayered ZN film between two recast Nafion® layers (ZNLM-Nafion) and by filtration coating from a suspension of thermally activated ZNs on a nonionic porous PVDF (ZNLM-PVDF). The ZNLMs on both supports demonstrated the ability of highly proton-selective ion conduction with low resistances in aqueous electrolyte solutions. The ZNLM-PVDF with PVDF binder was structurally stable, and it achieved a comparably low ASR but much higher proton selectivity compared with a Nafion membrane of same overall thickness. However, detachment between the ZNLM and Nafion layers occurred when the ZNLM-Nafion operated in aqueous electrolyte solutions. Results of this study show the potential for developing ZNLMs as efficient proton-conducting membranes without using expensive ionic polymer matrices. However, the development of polymer-supported ZNLMs is hindered by the current inefficiency in preparing well-dispersed suspensions of open-pore ZNs. Future development of efficient methods for synthesizing open-pore ZNs in dispersed states is key to realizing high-performance ZNLMs on polymers.

2.
ACS Appl Mater Interfaces ; 12(13): 15262-15270, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32150369

RESUMO

Non-aqueous redox flow batteries (RFBs) are promising energy storage devices owing to the broad electrochemical window of organic solvents. Nonetheless, the wide application of these batteries has been limited by the low stability and limited solubility of organic materials, as well as the insufficient ion conductivity of the cell separators in non-aqueous electrolytes. In this study, two viologen analogues with poly(ethylene glycol) (PEG) tails are designed as anolytes for non-aqueous RFBs. The PEGylation of viologen not only enhances the solubility in acetonitrile but also increases the overall molecular size for alleviated crossover. In addition, a composite nanoporous aramid nanofiber separator, which allows the permeation of supporting ions while inhibiting the crossover of the designer viologens, is developed using a scalable doctor-blading method. Paired with ferrocene, the full organic material-based RFB presents excellent cyclability (500 cycles) with a retention capacity per cycle of 99.93% and an average Coulombic efficiency of 99.3% at a current density of 2.0 mA/cm2. The high performance of the PEGylated viologen validates the potential of the PEGylation strategy for enhanced organic material-based non-aqueous RFBs.

3.
Sci Adv ; 4(11): eaau8634, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30480094

RESUMO

The tremendous potential of zeolite membranes for efficient molecular separation via size-exclusion effects is highly desired by the energy and chemical industries, but its practical realization has been hindered by nonselective permeation through intercrystalline spaces and high resistance to intracrystalline diffusion in the conventional zeolite membranes of randomly oriented polycrystalline structures. Here, we report the synthesis of ZSM-5 zeolite nanosheets with very large aspect ratios and nanometer-scale thickness in the preferred straight channel direction. We used these ZSM-5 nanosheets to fabricate ultrathin (<500 nm) laminated membranes on macroporous alumina substrates by a simple dip-coating process and subsequent consolidation via vapor-phase crystallization. This ultrathin b-oriented ZSM-5 membrane has demonstrated extraordinary water flux combined with high salt rejection in pervaporation desalination for brines containing up to 24 weight % of dissolved NaCl. The ZSM-5 nanosheets may also offer opportunities to developing high-performance battery ion separators, catalysts, adsorbents, and thin-film sensors.

4.
ACS Appl Mater Interfaces ; 10(2): 1534-1543, 2018 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-29276883

RESUMO

A novel drug delivery vehicle using nanodroplets activated by light irradiation for drug release in a controlled manner has been developed. The drug encapsulated in the nanodroplets was released upon phase transition from a liquid droplet to microbubbles (vaporization) by plasmonic photothermal heat from gold nanorods adsorbed on the surface of the nanodroplets. The nanodroplets were stable against aggregation and dissolution at 4 °C over 3 months to date. The phase transition was quantitatively analyzed by ultrasound imaging to examine the amount of drug release noninvasively. In vitro studies showed that cell death occurred only when light irradiation was performed on the drug-encapsulated nanodroplets. Ex vivo studies demonstrated a potential application of the nanodroplets for treating posterior eye diseases. Thus, it has been demonstrated that our gold-nanorod-coated light-activatable nanodroplets can be a candidate for a controlled release and a dosage-monitored drug delivery system.


Assuntos
Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Ouro , Nanotubos , Nanomedicina Teranóstica
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa