Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Proc Natl Acad Sci U S A ; 107(49): 21146-51, 2010 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-21078990

RESUMO

Mutations in superoxide dismutase 1 (SOD1) cause familial ALS. Mutant SOD1 preferentially associates with the cytoplasmic face of mitochondria from spinal cords of rats and mice expressing SOD1 mutations. Two-dimensional gels and multidimensional liquid chromatography, in combination with tandem mass spectrometry, revealed 33 proteins that were increased and 21 proteins that were decreased in SOD1(G93A) rat spinal cord mitochondria compared with SOD1(WT) spinal cord mitochondria. Analysis of this group of proteins revealed a higher-than-expected proportion involved in complex I and protein import pathways. Direct import assays revealed a 30% decrease in protein import only in spinal cord mitochondria, despite an increase in the mitochondrial import components TOM20, TOM22, and TOM40. Recombinant SOD1(G93A) or SOD1(G85R), but not SOD1(WT) or a Parkinson's disease-causing, misfolded α-synuclein(E46K) mutant, decreased protein import by >50% in nontransgenic mitochondria from spinal cord, but not from liver. Thus, altered mitochondrial protein content accompanied by selective decreases in protein import into spinal cord mitochondria comprises part of the mitochondrial damage arising from mutant SOD1.


Assuntos
Esclerose Lateral Amiotrófica/enzimologia , Proteínas Mitocondriais/análise , Mutação , Superóxido Dismutase/fisiologia , Esclerose Lateral Amiotrófica/genética , Animais , Fígado/química , Fígado/ultraestrutura , Mitocôndrias/metabolismo , Transporte Proteico , Proteômica/métodos , Ratos , Medula Espinal/química , Medula Espinal/ultraestrutura , Superóxido Dismutase/genética , Superóxido Dismutase-1
2.
NPJ Parkinsons Dis ; 9(1): 120, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37553379

RESUMO

Mitochondrial dysfunction has been suggested to contribute to Parkinson's disease pathogenesis, though an understanding of the extent or exact mechanism of this contribution remains elusive. This has been complicated by challenging nature of pathway-based analysis and an inability simultaneously study multiple related proteins within human brain tissue. We used imaging mass cytometry (IMC) to overcome these challenges, measuring multiple protein targets, whilst retaining the spatial relationship between targets in post-mortem midbrain sections. We used IMC to simultaneously interrogate subunits of the mitochondrial oxidative phosphorylation complexes, and several key signalling pathways important for mitochondrial homoeostasis, in a large cohort of PD patient and control cases. We revealed a generalised and synergistic reduction in mitochondrial quality control proteins in dopaminergic neurons from Parkinson's patients. Further, protein-protein abundance relationships appeared significantly different between PD and disease control tissue. Our data showed a significant reduction in the abundance of PINK1, Parkin and phosphorylated ubiquitinSer65, integral to the mitophagy machinery; two mitochondrial chaperones, HSP60 and PHB1; and regulators of mitochondrial protein synthesis and the unfolded protein response, SIRT3 and TFAM. Further, SIRT3 and PINK1 did not show an adaptive response to an ATP synthase defect in the Parkinson's neurons. We also observed intraneuronal aggregates of phosphorylated ubiquitinSer65, alongside increased abundance of mitochondrial proteases, LONP1 and HTRA2, within the Parkinson's neurons with Lewy body pathology, compared to those without. Taken together, these findings suggest an inability to turnover mitochondria and maintain mitochondrial proteostasis in Parkinson's neurons. This may exacerbate the impact of oxidative phosphorylation defects and ageing related oxidative stress, leading to neuronal degeneration. Our data also suggest that that Lewy pathology may affect mitochondrial quality control regulation through the disturbance of mitophagy and intramitochondrial proteostasis.

3.
Biochim Biophys Acta ; 1792(1): 68-74, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18973805

RESUMO

We have studied sporadic Parkinson's disease (sPD) from expression of patient mitochondrial DNA (mtDNA) in neural cells devoid of their own mtDNA, the "cybrid" model. In spite of reproducing several properties of sPD brain, it remains unclear whether sPD cybrid cells reflect more complex sPD brain bioenergetic pathophysiology. We characterized and correlated respiration of intact sPD cybrid cells with electron transport chain (ETC) protein assembly, complex I ETC gene expression and ETC protein levels in sPD brain. We also assayed expression for multiple ETC genes coded by mtDNA and nuclear DNA (nDNA) in sPD cybrid cells and brain. sPD cybrid cells have reduced levels of mtDNA genes, variable compensatory normalization of mitochondrial gene expression and show robust correlations with mitochondrial ETC gene expression in sPD brains. Relationships among ETC protein levels predict impaired complex I-mediated respiration in sPD brain. That sPD cybrid cells and sPD brain samples show very correlated regulation of nDNA and mtDNA ETC transcriptomes suggests similar bioenergetic physiologies. We propose that further insights into sPD pathogenesis will follow elucidation of mechanisms leading to reduced mtDNA gene levels in sPD cybrids. This will require characterization of the abnormalities and dynamics of mtDNA changes propagated through sPD cybrids over time.


Assuntos
Encéfalo/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Respiração Celular , DNA Mitocondrial/genética , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Expressão Gênica , Humanos , Células Híbridas , Biologia Molecular , Neurônios/metabolismo , Doença de Parkinson/etiologia
4.
Sci Rep ; 10(1): 15336, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32948797

RESUMO

The study of skeletal muscle continues to support the accurate diagnosis of mitochondrial disease and remains important in delineating molecular disease mechanisms. The heterogeneous expression of oxidative phosphorylation proteins and resulting respiratory deficiency are both characteristic findings in mitochondrial disease, hence the rigorous assessment of these at a single cell level is incredibly powerful. Currently, the number of proteins that can be assessed in individual fibres from a single section by immunohistochemistry is limited but imaging mass cytometry (IMC) enables the quantification of further, discrete proteins in individual cells. We have developed a novel workflow and bespoke analysis for applying IMC in skeletal muscle biopsies from patients with genetically-characterised mitochondrial disease, investigating the distribution of nine mitochondrial proteins in thousands of single muscle fibres. Using a semi-automated analysis pipeline, we demonstrate the accurate quantification of protein levels using IMC, providing an accurate measure of oxidative phosphorylation deficiency for complexes I-V at the single cell level. We demonstrate signatures of oxidative phosphorylation deficiency for common mtDNA variants and nuclear-encoded complex I variants and a compensatory upregulation of unaffected oxidative phosphorylation components. This technique can now be universally applied to evaluate a wide range of skeletal muscle disorders and protein targets.


Assuntos
Citometria por Imagem/métodos , Mitocôndrias Musculares/metabolismo , Doenças Mitocondriais/patologia , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/patologia , DNA Mitocondrial/genética , Distrofina/metabolismo , Complexo II de Transporte de Elétrons/metabolismo , Imunofluorescência , Humanos , Mitocôndrias Musculares/patologia , Doenças Mitocondriais/diagnóstico por imagem , Doenças Mitocondriais/genética , Doenças Mitocondriais/metabolismo , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Fosforilação Oxidativa , RNA de Transferência/genética , Reprodutibilidade dos Testes , Software , Interface Usuário-Computador , Canal de Ânion 1 Dependente de Voltagem/metabolismo
5.
Cancer Res ; 67(10): 4716-24, 2007 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-17510399

RESUMO

The antiangiogenic protein angiostatin inhibits ATP synthase on the endothelial cell surface, blocking cellular proliferation. To examine the specificity of this interaction, we generated monoclonal antibodies (mAb) directed against ATP synthase. mAb directed against the beta-catalytic subunit of ATP synthase (MAb3D5AB1) inhibits the activity of the F(1) domain of ATP synthase and recognizes the catalytic beta-subunit of ATP synthase. We located the antibody recognition site of MAb3D5AB1 in domains containing the active site of the beta-subunit. MAb3D5AB1 also binds to purified Escherichia coli F(1) with an affinity 25-fold higher than the affinity of angiostatin for this protein. MAb3D5AB1 inhibits the hydrolytic activity of F(1) ATP synthase at lower concentrations than angiostatin. Like angiostatin, MAb3D5AB1 inhibits ATP generation by ATP synthase on the endothelial cell surface in acidic conditions, the typical tumor microenvironment where cell surface ATP synthase exhibits greater activity. MAb3D5AB1 disrupts tube formation and decreases intracellular pH in endothelial cells exposed to low extracellular pH. Neither angiostatin nor MAb3D5AB1 showed an antiangiogenic effect in the corneal neovascularization assay; however, both were effective in the low-pH environment of the chicken chorioallantoic membrane assay. Thus, MAb3D5AB1 shows angiostatin-like properties superior to angiostatin and may be exploited in cancer chemotherapy.


Assuntos
Angiostatinas/metabolismo , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/farmacologia , ATPases Mitocondriais Próton-Translocadoras/imunologia , Trifosfato de Adenosina/biossíntese , Animais , Anticorpos Monoclonais/metabolismo , Sítios de Ligação de Anticorpos , Materiais Biomiméticos , Domínio Catalítico/imunologia , Bovinos , Membrana Corioalantoide/irrigação sanguínea , Neovascularização da Córnea/tratamento farmacológico , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Mapeamento de Epitopos , Feminino , Humanos , Concentração de Íons de Hidrogênio , Camundongos , Camundongos Endogâmicos BALB C , ATPases Mitocondriais Próton-Translocadoras/antagonistas & inibidores , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Modelos Moleculares , Neovascularização Fisiológica/efeitos dos fármacos , Ratos , Ratos Endogâmicos F344
6.
Trends Biochem Sci ; 27(3): 154-60, 2002 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11893513

RESUMO

The F(1)F(0)-type ATP synthase is a key enzyme in cellular energy interconversion. During ATP synthesis, this large protein complex uses a proton gradient and the associated membrane potential to synthesize ATP. It can also reverse and hydrolyze ATP to generate a proton gradient. The structure of this enzyme in different functional forms is now being rapidly elucidated. The emerging consensus is that the enzyme is constructed as two rotary motors, one in the F(1) part that links catalytic site events with movements of an internal rotor, and the other in the F(0) part, linking proton translocation to movements of this F(0) rotor. Although both motors can work separately, they must be connected together to interconvert energy. Evidence for the function of the rotary motor, from structural, genetic and biophysical studies, is reviewed here, and some uncertainties and remaining mysteries of the enzyme mechanism are also discussed.


Assuntos
Trifosfato de Adenosina/metabolismo , ATPases Translocadoras de Prótons/fisiologia , Bactérias/enzimologia , Potenciais da Membrana , Modelos Moleculares , Proteínas Motores Moleculares , Conformação Proteica , Dobramento de Proteína , ATPases Translocadoras de Prótons/química , Rotação
7.
Mol Genet Metab ; 94(4): 491-497, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18485778

RESUMO

Friedreich's Ataxia (FA) is an inherited neurodegenerative disease caused by reduction in levels of the mitochondrial protein frataxin. Currently there are no simple, reliable methods to accurately measure the concentrations of frataxin protein. We designed a lateral-flow immunoassay that quantifies frataxin protein levels in a variety of sample materials. Using recombinant frataxin we evaluated the accuracy and reproducibility of the assay. The assay measured recombinant human frataxin concentrations between 40 and 4000 pg/test or approximately 0.1-10 nM of sample. The intra and inter-assay error was <10% throughout the working range. To evaluate clinical utility of the assay we used genetically defined lymphoblastoid cells derived from FA patients, FA carriers and controls. Mean frataxin concentrations in FA patients and carriers were significantly different from controls and from one another (p=0.0001, p=0.003, p=0.005, respectively) with levels, on average, 29% (patients) and 64% (carriers) of the control group. As predicted, we observed an inverse relationship between GAA repeat number and frataxin protein concentrations within the FA patient cohort. The lateral flow immunoassay provides a simple, accurate and reproducible method to quantify frataxin protein in whole cell and tissue extracts, including primary samples obtained by non-invasive means, such as cheek swabs and whole blood. The assay is a novel tool for FA research that may facilitate improved diagnostic and prognostic evaluation of FA patients and could also be used to evaluate efficacy of therapies designed to cure FA by increasing frataxin protein levels.


Assuntos
Ataxia de Friedreich/diagnóstico , Heterozigoto , Imunoensaio/métodos , Proteínas de Ligação ao Ferro/metabolismo , Adolescente , Adulto , Idade de Início , Células Cultivadas , Criança , Estudos de Coortes , Feminino , Ataxia de Friedreich/metabolismo , Humanos , Proteínas de Ligação ao Ferro/análise , Proteínas de Ligação ao Ferro/genética , Masculino , Pessoa de Meia-Idade , Prognóstico , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Frataxina
8.
J Neurosci ; 26(19): 5256-64, 2006 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-16687518

RESUMO

Loss of mitochondrial complex I catalytic activity in the electron transport chain (ETC) is found in multiple tissues from individuals with sporadic Parkinson's disease (PD) and is a property of some PD model neurotoxins. Using special ETC subunit-specific and complex I immunocapture antibodies directed against the entire complex I macroassembly, we quantified ETC proteins and protein oxidation of complex I subunits in brain mitochondria from 10 PD and 12 age-matched control (CTL) samples. We measured nicotinamide adenine dinucleotide (NADH)-driven electron transfer rates through complex I and correlated these with complex I subunit oxidation levels and reductions of its 8 kDa subunit. PD brain complex I shows 11% increase in ND6, 34% decrease in its 8 kDa subunit and contains 47% more protein carbonyls localized to catalytic subunits coded for by mitochondrial and nuclear genomes We found no changes in levels of ETC proteins from complexes II-V. Oxidative damage patterns to PD complex I are reproduced by incubation of CTL brain mitochondria with NADH in the presence of rotenone but not by exogenous oxidant. NADH-driven electron transfer rates through complex I inversely correlate with complex I protein oxidation status and positively correlate with reduction in PD 8 kDa subunit. Reduced complex I function in PD brain mitochondria appears to arise from oxidation of its catalytic subunits from internal processes, not from external oxidative stress, and correlates with complex I misassembly. This complex I auto-oxidation may derive from abnormalities in mitochondrial or nuclear encoded subunits, complex I assembly factors, rotenone-like complex I toxins, or some combination.


Assuntos
Complexo I de Transporte de Elétrons/química , Complexo I de Transporte de Elétrons/metabolismo , Lobo Frontal/enzimologia , Neurônios/enzimologia , Doença de Parkinson/enzimologia , Células Cultivadas , Complexo I de Transporte de Elétrons/análise , Humanos , Estresse Oxidativo , Subunidades Proteicas , Relação Estrutura-Atividade
9.
Biochim Biophys Acta ; 1762(2): 213-22, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16120479

RESUMO

The oxidative phosphorylation system (OXPHOS) consists of five multi-enzyme complexes, Complexes I-V, and is a key component of mitochondrial function relating to energy production, oxidative stress, cell signaling and apoptosis. Defects or a reduction in activity in various components that make up the OXPHOS enzymes can cause serious diseases, including neurodegenerative disease and various metabolic disorders. Our goal is to develop techniques that are capable of rapid and in-depth analysis of all five OXPHOS complexes. Here, we describe a mild, micro-scale immunoisolation and mass spectrometric/proteomic method for the characterization of Complex II (succinate dehydrogenase) and Complex III (ubiquinol-cytochrome c reductase) from bovine and rodent heart mitochondria. Extensive protein sequence coverage was obtained after immunocapture, 1D SDS PAGE separation and mass spectrometric analysis for a majority of the 4 and 11 subunits, respectively, that make up Complexes II and III. The identification of several posttranslational modifications, including the covalent FAD modification of flavoprotein subunit 1 from Complex II, was possible due to high mass spectrometric sequence coverage.


Assuntos
Complexo III da Cadeia de Transporte de Elétrons/isolamento & purificação , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Mitocôndrias Cardíacas/enzimologia , Proteômica , Succinato Desidrogenase/isolamento & purificação , Succinato Desidrogenase/metabolismo , Sequência de Aminoácidos , Animais , Bovinos , Complexo III da Cadeia de Transporte de Elétrons/química , Imunoprecipitação , Espectrometria de Massas , Camundongos , Dados de Sequência Molecular , Processamento de Proteína Pós-Traducional , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Succinato Desidrogenase/química
10.
FEBS Lett ; 581(18): 3545-9, 2007 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-17624330

RESUMO

A monoclonal antibody (mAb) has been produced which reacts with human mitofilin, a mitochondrial inner membrane protein. This mAb immunocaptures its target protein in association with six other proteins, metaxins 1 and 2, SAM50, CHCHD3, CHCHD6 and DnaJC11, respectively. The first three are outer membrane proteins, CHCHD3 has been assigned to the matrix space, and the other two proteins have not been described in mitochondria previously. The functional role of this new complex is uncertain. However, a role in protein import related to maintenance of mitochondrial structure is suggested as mitofilin helps regulate mitochondrial morphology and at least four of the associated proteins (metaxins 1 and 2, SAM50 and CHCHD3) have been implicated in protein import, while DnaJC11 is a chaperone-like protein that may have a similar role.


Assuntos
Proteínas de Membrana/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas Musculares/metabolismo , Proteínas/metabolismo , Animais , Humanos , Camundongos , Proteínas de Transporte da Membrana Mitocondrial , Membranas Mitocondriais/metabolismo , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Miocárdio/metabolismo , Ligação Proteica , Espectrometria de Massas em Tandem
11.
Biotechnol Appl Biochem ; 48(Pt 4): 167-78, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17508937

RESUMO

COX (cytochrome c oxidase) deficiency is one of the main causes of genetic mitochondrial disease and presents with multiple phenotypes, depending on whether the causative mutation exists in a mitochondrial or nuclear gene and on whether it involves an altered catalytic or structural component or an assembly factor for this membrane-embedded 13-subunit enzyme complex. COX deficiency is routinely observed in AD (Alzheimer's disease), although there is continuing debate about whether this is a causative or a secondary consequence of the condition. Altered levels of COX and reduced oxidative phosphorylation capacity have been reported in other common diseases, including cancer, and are seen as unwanted side effects in a number of drug treatments, particularly with antiretroviral and antibiotic treatments. Here, we introduce a simple, rapid, high-throughput 96-well plate protocol that uses a multiplex approach to determine the amount and activity of COX, which should find widespread use in evaluating the above diseases and in drug safety studies. Importantly, the method uses very small amounts of cell material or tissue and does not require the isolation of mitochondria. We show the utility of this approach by example of the analysis of fibroblasts from patients with COX activity deficiency and the effect of the antiretroviral drug ddC (2',3'-dideoxycytidine) on the biogenesis of the enzyme.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/isolamento & purificação , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Animais , Anticorpos Monoclonais/imunologia , Bovinos , Extratos Celulares , Bases de Dados de Proteínas , Complexo IV da Cadeia de Transporte de Elétrons/biossíntese , Complexo IV da Cadeia de Transporte de Elétrons/química , Fibroblastos/química , Fibroblastos/citologia , Humanos , Imunoprecipitação , Espectrometria de Massas , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/enzimologia , Mitocôndrias/metabolismo , Doenças Mitocondriais/enzimologia , Doenças Mitocondriais/genética , Miocárdio/metabolismo , Especificidade de Órgãos , Subunidades Proteicas/química , Subunidades Proteicas/imunologia , Subunidades Proteicas/isolamento & purificação , Zalcitabina/toxicidade
12.
Toxicol In Vitro ; 21(5): 902-11, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17346924

RESUMO

Mitochondrial dysfunction has been shown to be a pharmacotoxicological response to a variety of currently-marketed drugs. In order to reduce attrition due to mitochondrial toxicity, high throughput-applicable screens are needed for early stage drug discovery. We describe, here, a set of immunocapture based assays to identify compounds that directly inhibit four of the oxidative phosphorylation (OXPHOS) complexes: I, II, IV, and V. Intra- and inter-assay variation were determined and specificity tested by using classical mitochondrial inhibitors. Twenty drugs, some with known mitochondrial toxicity and others with no known mitochondrial liability, were studied. Direct inhibition of one or more of the OXPHOS complexes was identified for many of the drugs. Novel information was obtained for several drugs including ones with previously unknown effects on oxidative phosphorylation. A major advantage of the immunocapture approach is that it can be used throughout drug screening from early compound evaluation to clinical trials.


Assuntos
Mitocôndrias Cardíacas/efeitos dos fármacos , Fosforilação Oxidativa/efeitos dos fármacos , Desacopladores/toxicidade , Animais , Anticorpos Monoclonais , Bovinos , Avaliação Pré-Clínica de Medicamentos/métodos , Complexo I de Transporte de Elétrons/antagonistas & inibidores , Complexo I de Transporte de Elétrons/metabolismo , Complexo II de Transporte de Elétrons/antagonistas & inibidores , Complexo II de Transporte de Elétrons/metabolismo , Inibidores Enzimáticos/toxicidade , Imunoquímica , Técnicas In Vitro , Oligomicinas/toxicidade , Cianeto de Potássio/toxicidade , ATPases Translocadoras de Prótons/antagonistas & inibidores , ATPases Translocadoras de Prótons/metabolismo , Rotenona/toxicidade , Succinato Citocromo c Oxirredutase/antagonistas & inibidores , Succinato Citocromo c Oxirredutase/metabolismo , Tenoiltrifluoracetona/toxicidade
13.
Nat Biotechnol ; 21(3): 281-6, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12592411

RESUMO

To gain a better understanding of the critical role of mitochondria in cell function, we have compiled an extensive catalogue of the mitochondrial proteome using highly purified mitochondria from normal human heart tissue. Sucrose gradient centrifugation was employed to partially resolve protein complexes whose individual protein components were separated by one-dimensional PAGE. Total in-gel processing and subsequent detection by mass spectrometry and rigorous bioinformatic analysis yielded a total of 615 distinct protein identifications. All protein pI values, molecular weight ranges, and hydrophobicities were represented. The coverage of the known subunits of the oxidative phosphorylation machinery within the inner mitochondrial membrane was >90%. A significant proportion of identified proteins are involved in signaling, RNA, DNA, and protein synthesis, ion transport, and lipid metabolism. The biochemical roles of 19% of the identified proteins have not been defined. This database of proteins provides a comprehensive resource for the discovery of novel mitochondrial functions and pathways.


Assuntos
Bases de Dados de Proteínas , Proteínas Mitocondriais/química , Proteínas Mitocondriais/fisiologia , Proteoma/química , Proteoma/fisiologia , Adolescente , Adulto , Sequência de Aminoácidos , Animais , Células Cultivadas , Eletroforese/métodos , Coração/fisiologia , Humanos , Armazenamento e Recuperação da Informação/métodos , Espectrometria de Massas/métodos , Pessoa de Meia-Idade , Mitocôndrias/química , Mitocôndrias/genética , Mitocôndrias/fisiologia , Proteínas Mitocondriais/classificação , Proteínas Mitocondriais/genética , Peso Molecular , Miocárdio/química , Proteoma/genética , Proteômica/métodos , Análise de Sequência de Proteína/métodos
14.
Mitochondrion ; 6(6): 305-14, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17113362

RESUMO

F(1)F(0) ATP synthase is ectopically expressed on the surface of several cell types, including endothelium and cancer cells. This study uses immunocytochemical detection methods via highly specific monoclonal antibodies to explore the possibility of plasma membrane localization of other mitochondrial proteins using an osteosarcoma cell line in which the location of the mitochondrial reticulum can be clearly traced by green fluorescent protein tagging of the organelle. We found that subunits of three of the four respiratory chain complexes were present on the surface of these cells. Additionally, we show for the first time that F(0) subunits d and OSCP of the ATP synthase are ectopically expressed. In all cases the OXPHOS proteins show a punctate distribution, consistent with data from proteome analysis of isolated lipid rafts that place the various mitochondrial proteins in plasma membrane microdomains. We also examined the cell surface for marker membrane proteins from several other intracellular organelles including ER, golgi and nuclear envelope. They were not found on the surface of the osteosarcoma cells. We conclude that mitochondrial membrane proteins are ectopically expressed, but not proteins from other cellular organelles. A specific mechanism by which the mitochondrion and plasma membrane fuse to deliver organellar proteins is suggested.


Assuntos
Membrana Celular/enzimologia , Transporte de Elétrons , Mitocôndrias/metabolismo , Osteossarcoma/enzimologia , Osteossarcoma/patologia , ATPases Translocadoras de Prótons/metabolismo , Linhagem Celular Tumoral , Humanos , Imuno-Histoquímica , Subunidades Proteicas
15.
Cancer Res ; 64(3): 985-93, 2004 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-14871829

RESUMO

Comparative analysis of cytoplasmic organelles in a variety of tumors relative to normal tissues generally reveals a strong diminution in mitochondrial content and in oxidative phosphorylation capacity. However, little is known about what triggers these modifications and whether or not they are physiologically reversible. We hypothesized that energy substrate availability could play an important role in this phenomenon. The physiological effects of a change in substrate availability were examined on a human cancer cell line (HeLa), focusing specifically on its ability to use glycolysis versus oxidative phosphorylation, and the effect that energy substrate type has on mitochondrial composition, structure, and function. Changes in oxidative phosphorylation were measured in vivo by a variety of techniques, including the use of two novel ratiometric green fluorescent protein biosensors, the expression level of oxidative phosphorylation and some glycolytic enzymes were determined by Western blot, mitochondrial DNA content was measured by real-time PCR, and mitochondrial morphology was monitored by both confocal and electron microscopy. Our data show that the defective mitochondrial system described in cancer cells can be dramatically improved by solely changing substrate availability and that HeLa cells can adapt their mitochondrial network structurally and functionally to derive energy by glutaminolysis only. This could also provide an explanation for the enhancement of oxidative phosphorylation capacity observed after tumor regression or removal. Our work demonstrates that the pleomorphic, highly dynamic structure of the mitochondrion can be remodeled to accommodate a change in oxidative phosphorylation activity. We compared our finding on HeLa cells with those for nontransformed fibroblasts to help distinguish the regulatory pathways.


Assuntos
Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Neoplasias/metabolismo , Neoplasias/ultraestrutura , Técnicas Biossensoriais , Divisão Celular/fisiologia , Meios de Cultura , DNA Mitocondrial/metabolismo , Metabolismo Energético , Galactose/administração & dosagem , Galactose/metabolismo , Glucose/deficiência , Glucose/metabolismo , Glicólise , Células HeLa , Hexoquinase/biossíntese , Hexoquinase/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Proteínas Mitocondriais/biossíntese , Proteínas Mitocondriais/metabolismo , Proteínas de Transporte de Monossacarídeos/biossíntese , Proteínas de Transporte de Monossacarídeos/metabolismo , Oxirredução , Fosforilação Oxidativa , Consumo de Oxigênio/fisiologia
16.
Biochim Biophys Acta ; 1659(2-3): 206-11, 2004 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-15576053

RESUMO

The availability of monoclonal antibodies (mAbs) against the proteins of the oxidative phosphorylation chain (OXPHOS) and other mitochondrial components facilitates the analysis and ultimately the diagnosis of mitochondrially related diseases. mAbs against each of the five complexes and pyruvate dehydrogenase (PDH) are the basis of a rapid and simple immunocytochemical approach [Hanson, B.J., Capaldi, R.A., Marusich, M.F. and Sherwood, S.W., J. Histochem. Cytochem. 50 (2002) 1281-1288]. This approach can be used to detect if complexes have altered assembly in mitochondrial disease due to mutations in nuclear encoded genes, such as in Leigh's disease, or in mitochondrially encoded genes, e.g., MELAS. Other mAbs have recently been obtained that can immunocapture each of the five OXPHOS complexes, PDH and the adenine nucleotide translocase (ANT) from very small amounts of tissue such as that obtained from cell culture or needle biopsies from patients. When adapted to a 96-well plate format, these mAbs allow measurement of the specific activity of each of the mitochondrial components individually and analysis of their subunit composition and state of posttranslational modification. The immunocapture protocol should be useful not only in the analysis of genetic mitochondrial diseases but also in evaluating and ultimately diagnosing late-onset mitochondrial disorders including Parkinson's disease, Alzheimer's disease, and late-onset diabetes, which are thought to result from accumulated oxidative damage to mitochondrial proteins such as the OXPHOS chain.


Assuntos
Anticorpos Monoclonais , Doenças Mitocondriais/diagnóstico , Proteínas/análise , Proteômica/métodos , Animais , Bovinos , Complexo IV da Cadeia de Transporte de Elétrons/análise , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Fibroblastos/imunologia , Fibroblastos/patologia , Humanos , Imuno-Histoquímica/métodos , Translocases Mitocondriais de ADP e ATP/análise , Translocases Mitocondriais de ADP e ATP/imunologia , Doenças Mitocondriais/metabolismo , Fosforilação , Processamento de Proteína Pós-Traducional , Proteínas/imunologia , Complexo Piruvato Desidrogenase/análise , Complexo Piruvato Desidrogenase/imunologia
17.
Biochim Biophys Acta ; 1555(1-3): 192-5, 2002 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-12206914

RESUMO

The mitochondrion within human cells in tissue culture is pleomorphic and highly dynamic. The organelle mass can exist as thousands of small ovoids or as one continuous reticulum. In either state, the mitochondrial mass is in constant thermal motion, as well as moving in approximately 0.8-microm jumps that are determined by, and related to, attachments with cytoskeletal elements. Many protein complexes, such as the pyruvate dehydrogenase (PDH) complex and DNA containing nucleoids, are dispersed through the mass and as though fixed by attachments to membranes, such that they can become distributed to all of the individual small ovoid mitochondria when the reticulum becomes fragmented. This leads us to propose that a replicating module is the repeating unit of mitochondrial structure. Studies to examine heterogeneity of functioning within the organelle mass are briefly reviewed.


Assuntos
Citoesqueleto/fisiologia , Membranas Intracelulares/fisiologia , Mitocôndrias/fisiologia , Técnicas Biossensoriais , Citoesqueleto/química , DNA Mitocondrial/química , Proteínas de Fluorescência Verde , Humanos , Membranas Intracelulares/química , Proteínas Luminescentes , Proteínas de Membrana/química , Mitocôndrias/química , Mitocôndrias/ultraestrutura , Mitose , Complexo Piruvato Desidrogenase/química , Fase S , Células Tumorais Cultivadas
18.
FEBS Lett ; 579(11): 2485-90, 2005 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-15848193

RESUMO

Mitochondrial Complex I (NADH:ubiquinone oxidoreductase) consists of at least 46 subunits. Phosphorylation of the 42-kDa subunit NDUFA10 was recently reported using a novel phosphoprotein stain [Schulenberg et al. (2003) Analysis of steady-state protein phosphorylation in mitochondria using a novel fluorescent phosphosensor dye. J. Biol. Chem. 278, 27251]. Two smaller Complex I phosphoproteins, ESSS and MWFE, and their sites of modification, have since been determined [Chen et al. (2004) The phosphorylation of subunits of complex I from bovine heart mitochondria. J. Biol. Chem. 279, 26036]. Here we identify the site of phosphorylation in NDUFA10 from bovine heart mitochondria by tandem mass spectrometry. A single phosphopeptide spanning residues 47-60 was identified and confirmed by synthesis to be (47)LITVDGNICSGKpSK(60), establishing serine-59 as the site of phosphorylation.


Assuntos
Complexo I de Transporte de Elétrons/química , Complexo I de Transporte de Elétrons/metabolismo , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Fosfatase Alcalina/metabolismo , Sequência de Aminoácidos , Animais , Bovinos , Humanos , Dados de Sequência Molecular , Fosforilação , Alinhamento de Sequência , Espectrometria de Massas por Ionização por Electrospray
19.
FEBS Lett ; 529(2-3): 173-8, 2002 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-12372595

RESUMO

Pyruvate dehydrogenase (PDH) and complex III are two key protein complexes in mitochondrial metabolic activity. Using a novel quantitative Western blotting method, we find that PDH and complex III exist at a steady-state ratio of 1:100, 1:128 and 1:202 in HeLa cell extracts, fibroblast mitochondria and heart tissue mitochondria, respectively. This difference in stoichiometry is reflected in the immunogold labeling intensities of the two complexes and by the much more sparse distribution of PDH in fluorescence microscopy. In Rho0 fibroblasts there is a 64% reduction of complex III but the concentration of PDH remains the same as wild-type.


Assuntos
Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Mitocôndrias/enzimologia , Proteoma , Complexo Piruvato Desidrogenase/metabolismo , Western Blotting , Eletroforese em Gel de Poliacrilamida , Células HeLa , Humanos , Microscopia de Fluorescência , Microscopia Imunoeletrônica , Mitocôndrias/ultraestrutura
20.
FEBS Lett ; 546(2-3): 355-8, 2003 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-12832068

RESUMO

The inner membrane system of mitochondria us known to consist of two contiguous but distinct membranes: the inner boundary membrane, which apposes the outer membrane, and the cristal membrane, which forms tubules or lamellae in the interior. Using immunolabeling and transmission electron microscopy of bovine heart tissue, we have calculated that around 94% of both Complex III of the respiratory chain and the ATP synthase are located in the cristal membrane, and only around 6% of either is in the inner boundary membrane. When accounting for the topographical ratio of cristal membrane versus inner boundary membrane, we find that both complexes exist at a 2.2-2.6-fold higher concentration in the cristal membrane. The residual protein in the inner boundary membrane may be newly assembled complexes destined for cristal membranes. Our results argue for restricted diffusion of complexes through the cristal junctions and indicate that the mitochondrial cristae comprise a regulated submitochondrial compartment specialized for ATP production.


Assuntos
Membranas Intracelulares/metabolismo , Mitocôndrias Cardíacas/metabolismo , Fosforilação Oxidativa , Complexos de ATP Sintetase/metabolismo , Animais , Bovinos , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Imuno-Histoquímica , Membranas Intracelulares/enzimologia , Membranas Intracelulares/ultraestrutura , Microscopia Eletrônica , Mitocôndrias Cardíacas/enzimologia , Mitocôndrias Cardíacas/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa