Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Eur Biophys J ; 51(2): 99-104, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34463775

RESUMO

In recent decades, mechanobiology has emerged as a novel perspective in the context of basic biomedical research. It is now widely recognized that living cells respond not only to chemical stimuli (for example drugs), but they are also able to decipher mechanical cues, such as the rigidity of the underlying matrix or the presence of shear forces. Probing the viscoelastic properties of cells and their local microenvironment with sub-micrometer resolution is required to study this complex interplay and dig deeper into the mechanobiology of single cells. Current approaches to measure mechanical properties of adherent cells mainly rely on the exploitation of miniaturized indenters, to poke single cells while measuring the corresponding deformation. This method provides a neat implementation of the everyday approach to measure mechanical properties of a material, but it typically results in a very low throughput and invasive experimental protocol, poorly translatable towards three-dimensional living tissues and biological constructs. To overcome the main limitations of nanoindentation experiments, a radical paradigm change is foreseen, adopting next generation contact-less methods to measure mechanical properties of biological samples with sub-cell resolution. Here we briefly introduce the field of single cell mechanical characterization, and we concentrate on a promising high resolution optical elastography technique, Brillouin spectroscopy. This non-contact technique is rapidly emerging as a potential breakthrough innovation in biomechanics, but the application to single cells is still in its infancy.


Assuntos
Técnicas de Imagem por Elasticidade , Fenômenos Biomecânicos , Biofísica , Análise Espectral
2.
Nanomaterials (Basel) ; 12(15)2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35957122

RESUMO

Mechanotransduction refers to the cellular ability to sense mechanical stimuli from the surrounding environment and convert them into biochemical signals that regulate cellular physiology and homeostasis. Mechanosensitive ion channels (MSCs), especially ones of Piezo family (Piezo1 and Piezo2), play a crucial role in mechanotransduction. These transmembrane proteins directly react to mechanical cues by triggering the onset of an ionic current. The relevance of this mechanism in driving physiology and pathology is emerging, and there is a growing need for the identification of an affordable and reliable assay to measure it. Setting up a mechanosensitivity assay requires exerting a mechanical stimulus on single cells while observing the downstream effects of channels opening. We propose an open-hardware approach to stimulate single adherent cells through controlled microindentation, using a 3D-printed actuation platform. We validated the device by measuring the mechanosensitivity of a neural mice cell line where the expression level and activity of Piezo1 were genetically and pharmacologically manipulated. Moreover, this extremely versatile device could be integrated with different read-out technologies, offering a new tool to improve the understanding of mechanotransduction in living cells.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa