Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 29(8)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38675544

RESUMO

Scientific and industrial reasons dictate the study of the solid state of imepitoin, a highly safe and tolerable anticonvulsant drug used in the therapy of epileptic dogs that was approved in the Europe Union in 2013. Our investigations allowed us to discover the existence of a new polymorph of imepitoin, which finds itself in a monotropic relationship with the crystalline form (polymorph I) already known and present on the market. This form (polymorph II), obtained by crystallization from xylene, remains metastable under ambient conditions for at least 1 year. Both solid forms were characterized by thermal (DSC and TGA), spectroscopic (FT-IR and Raman), microscopic (SEM and HSM), and diffractometric techniques. The thermodynamic relationship between the two polymorphs (monotropic) is such that it is not possible to study the melting of polymorph II, not even by adopting appropriate experimental strategies. Our measurements highlighted that the melting peak of imepitoin actually also includes an onset of melt decomposition. The ab initio structure solution, obtained from synchrotron X-ray powder diffraction data collected at room temperature, allowed us to determine the crystal structure of the new polymorph (II). It crystallizes in the monoclinic crystal structure, P21/c space group (#14), with a = 14.8687(6) Å, b = 7.2434(2) Å, c = 12.5592(4) Å, ß = 107.5586(8)°, V = 1289.61(8) Å3, and Z = 4.

2.
Molecules ; 29(8)2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38675705

RESUMO

The NASICON-structured Na3MnZr(PO4)3 compound is a promising high-voltage cathode material for sodium-ion batteries (SIBs). In this study, an easy and scalable electrospinning approach was used to synthesize self-standing cathodes based on Na3MnZr(PO4)3 loaded into carbon nanofibers (CNFs). Different strategies were applied to load the active material. All the employed characterization techniques (X-ray powder diffraction (XRPD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS), thermal gravimetric analysis (TGA), and Raman spectroscopy) confirmed the successful loading. Compared to an appositely prepared tape-cast electrode, Na3MnZr(PO4)3/CNF self-standing cathodes demonstrated an enhanced specific capacity, especially at high C-rates, thanks to the porous conducive carbon nanofiber matrix. Among the strategies applied to load Na3MnZr(PO4)3 into the CNFs, the electrospinning (vertical setting) of the polymeric solution containing pre-synthesized Na3MnZr(PO4)3 powders resulted effective in obtaining the quantitative loading of the active material and a homogeneous distribution through the sheet thickness. Notably, Na3MnZr(PO4)3 aggregates connected to the CNFs, covered their surface, and were also embedded, as demonstrated by TEM and EDS. Compared to the self-standing cathodes prepared with the horizontal setting or dip-drop coating methods, the vertical binder-free electrode exhibited the highest capacity values of 78.2, 55.7, 38.8, 22.2, 16.2, 12.8, 10.3, 9.0, and 8.5 mAh/g at C-rates of 0.05C, 0.1C, 0.2C, 0.5C, 1C, 2C, 5C, 10C, and 20C, respectively, with complete capacity retention at the end of the measurements. It also exhibited a good cycling life, compared to its tape-cast counterpart: it displayed higher capacity retention at 0.2C and 1C, and, after cycling 1000 cycles at 1C, it could be further cycled at 5C, 10C, and 20C.

3.
Molecules ; 28(8)2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37110635

RESUMO

Carvedilol is a poorly water-soluble drug employed to treat chronic heart failure. In this study, we synthesize new carvedilol-etched halloysite nanotubes (HNTs) composites to enhance solubility and dissolution rate. The simple and feasible impregnation method is used for carvedilol loading (30-37% weight). Both the etched HNTs (acidic HCl and H2SO4 and alkaline NaOH treatments) and the carvedilol-loaded samples are characterized by various techniques (XRPD, FT-IR, solid-state NMR, SEM, TEM, DSC, and specific surface area). The etching and loading processes do not induce structural changes. The drug and carrier particles are in intimate contact and their morphology is preserved, as demonstrated by TEM images. The 27Al and 13C solid-state NMR and FT-IR findings show that carvedilol interactions involve the external siloxane surface, especially the aliphatic carbons, the functional groups, and, by inductive effect, the adjacent aromatic carbons. All the carvedilol-halloysite composites display enhanced dissolution rate, wettability, and solubility, as compared to carvedilol. The best performances are obtained for the carvedilol-halloysite system based on HNTs etched with HCl 8M, which exhibits the highest value of specific surface area (91 m2 g-1). The composites make the drug dissolution independent of the environmental conditions of the gastrointestinal tract and its absorption less variable, more predictable, and independent from the pH of the medium.


Assuntos
Nanotubos , Carvedilol/química , Solubilidade , Argila , Espectroscopia de Infravermelho com Transformada de Fourier , Nanotubos/química
4.
Molecules ; 26(11)2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-34073973

RESUMO

The present work is a concrete example of how physico-chemical studies, if performed in depth, are crucial to understand the behavior of pharmaceutical solids and constitute a solid basis for the control of the reproducibility of the industrial batches. In particular, a deep study of the thermal behavior of glipizide, a hypoglycemic drug, was carried out with the aim of clarifying whether the recognition of its polymorphic forms can really be done on the basis of the endothermic peak that the literature studies attribute to the melting of the compound. A number of analytical techniques were used: thermal techniques (DSC, TGA), X-ray powder diffraction (XRPD), FT-IR spectroscopy and scanning electron microscopy (SEM). Great attention was paid to the experimental design and to the interpretation of the combined results obtained by all these techniques. We proved that the attribution of the endothermic peak shown by glipizide to its melting was actually wrong. The DSC peak is no doubt triggered by a decomposition process that involves gas evolution (cyclohexanamine and carbon dioxide) and formation of 5-methyl-N-[2-(4-sulphamoylphenyl) ethyl] pyrazine-2-carboxamide, which remains as decomposition residue. Thermal treatments properly designed and the combined use of DSC with FT-IR and XRPD led to identifying a new polymorphic form of 5-methyl-N-[2-(4-sulphamoylphenyl) ethyl] pyrazine-2-carboxamide, which is obtained by crystallization from the melt. Hence, our results put into evidence that the check of the polymorphic form of glipizide cannot be based on the temperature values of the DSC peak, since such a peak is due to a decomposition process whose Tonset value is strongly affected by the particle size. Kinetic studies of the decomposition process show the high stability of solid glipizide at room temperature.


Assuntos
Glipizida/química , Hipoglicemiantes/química , Varredura Diferencial de Calorimetria , Microscopia Eletrônica de Varredura , Difração de Pó , Espectroscopia de Infravermelho com Transformada de Fourier , Termogravimetria
5.
Phys Chem Chem Phys ; 16(22): 10353-66, 2014 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-24764049

RESUMO

Lithium metal orthosilicates are attracting a lot of attention owing to their promising prospects as potential high capacity cathode materials for Li-ion batteries. Currently, great efforts are being made in order to achieve the full theoretical specific capacity of 330 mA h g(-1), but many issues remain unsolved (e.g., poor structural and cycling stability), which limit their practical application. The present perspective highlights the importance of assessing the electrochemical behaviour of Li2(Fe,Mn)SiO4 by combining an arsenal of characterization techniques both spectroscopic and structural, in and ex situ. Here, we review the most recent achievements in the investigation of the electrochemical performance of lithium metal orthosilicate cathodes and, through some of our recent results, we attempt to clarify the relationship between the structure and electrochemistry of these compounds.

6.
Nanomaterials (Basel) ; 14(9)2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38727398

RESUMO

Self-standing Na3MnTi(PO4)3/carbon nanofiber (CNF) electrodes are successfully synthesized by electrospinning. A pre-synthesized Na3MnTi(PO4)3 is dispersed in a polymeric solution, and the electrospun product is heat-treated at 750 °C in nitrogen flow to obtain active material/CNF electrodes. The active material loading is 10 wt%. SEM, TEM, and EDS analyses demonstrate that the Na3MnTi(PO4)3 particles are homogeneously spread into and within CNFs. The loaded Na3MnTi(PO4)3 displays the NASICON structure; compared to the pre-synthesized material, the higher sintering temperature (750 °C) used to obtain conductive CNFs leads to cell shrinkage along the a axis. The electrochemical performances are appealing compared to a tape-casted electrode appositely prepared. The self-standing electrode displays an initial discharge capacity of 124.38 mAh/g at 0.05C, completely recovered after cycling at an increasing C-rate and a coulombic efficiency ≥98%. The capacity value at 20C is 77.60 mAh/g, and the self-standing electrode exhibits good cycling performance and a capacity retention of 59.6% after 1000 cycles at 1C. Specific capacities of 33.6, 22.6, and 17.3 mAh/g are obtained by further cycling at 5C, 10C, and 20C, and the initial capacity is completely recovered after 1350 cycles. The promising capacity values and cycling performance are due to the easy electrolyte diffusion and contact with the active material, offered by the porous nature of non-woven nanofibers.

7.
Pharmaceutics ; 16(3)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38543233

RESUMO

The study focuses on the synthesis and characterization of Meloxicam-halloysite nanotube (HNT) composites as a viable approach to enhance the solubility and dissolution rate of meloxicam, a poorly water-soluble drug (BCS class II). Meloxicam is loaded on commercial and modified halloysite (acidic and alkaline etching, or APTES and chitosan functionalization) via a solution method. Several techniques (XRPD, FT-IR, 13C solid-state NMR, SEM, EDS, TEM, DSC, TGA) are applied to characterize both HNTs and meloxicam-HNT systems. In all the investigated drug-clay hybrids, a high meloxicam loading of about 40 wt% is detected. The halloysite modification processes and the drug loading do not alter the structure and morphology of both meloxicam and halloysite nanotubes, which are in intimate contact in the composites. Weak drug-clay and drug-functionalizing agent interactions occur, involving the meloxicam amidic functional group. All the meloxicam-halloysite composites exhibit enhanced dissolution rates, as compared to meloxicam. The meloxicam-halloysite composite, functionalized with chitosan, showed the best performance both in water and in buffer at pH 7.5. The drug is completely released in 4-5 h in water and in less than 1 h in phosphate buffer. Notably, an equilibrium solubility of 13.7 ± 4.2 mg/L in distilled water at 21 °C is detected, and wettability dramatically increases, compared to the raw meloxicam. These promising results can be explained by the chitosan grafting on the outer surface of halloysite nanotubes, which provides increased specific surface area (100 m2/g) disposable for drug adsorption/desorption.

8.
Phys Chem Chem Phys ; 15(21): 8035-41, 2013 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-23608945

RESUMO

Li2MSiO4 (M = Fe, Mn, etc.) are promising cathode materials for Li-ion batteries. One appealing strategy for improving their cathode properties is to develop mixed transition metal compounds. Density Functional Theory calculations were performed to evaluate the structural, magnetic and electrochemical properties of Li2M0.5N0.5SiO4 compounds. Our theoretical study allows us to individuate the most promising candidates for practical applications in lithium batteries.

9.
Nanomaterials (Basel) ; 13(7)2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37049252

RESUMO

ZnS-graphene composites (ZnSGO) were synthesized by a hydrothermal process and loaded onto carbon nanofibers (CNFs) by electrospinning (ZnS-GO/CNF), to obtain self-standing anodes for SIBs. The characterization techniques (XRPD, SEM, TEM, EDS, TGA, and Raman spectroscopy) confirm that the ZnS nanocrystals (10 nm) with sphalerite structure covered by the graphene sheets were successfully synthesized. In the ZnS-GO/CNF anodes, the active material is homogeneously dispersed in the CNFs' matrix and the ordered carbon source mainly resides in the graphene component. Two self-standing ZnS-GO/CNF anodes (active material amount: 11.3 and 24.9 wt%) were electrochemically tested and compared to a tape-casted ZnS-GO example prepared by conventional methods (active material amount: 70 wt%). The results demonstrate improved specific capacity at high C-rate for the free-standing anodes compared to the tape-casted example (69.93 and 92.59 mAh g-1 at 5 C for 11.3 and 24.9 wt% free-standing anodes, respectively, vs. 50 mAh g-1 for tape-casted). The 24.9 wt% ZnS-GO/CNF anode gives the best cycling performances: we obtained capacities of 255-400 mAh g-1 for 200 cycles and coulombic efficiencies ≥ 99% at 0.5 C, and of 80-90 mAh g-1 for additional 50 cycles at 5 C. The results suggest that self-standing electrodes with improved electrochemical performances at high C-rates can be prepared by a feasible and simple strategy: ex situ synthesis of the active material and addition to the carbon precursor for electrospinning.

10.
Nanomaterials (Basel) ; 12(23)2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36500953

RESUMO

The present work aimed at decorating halloysite nanotubes (HNT) with magnetic Fe3O4 nanoparticles through different synthetic routes (co-precipitation, hydrothermal, and sol-gel) to test the efficiency of three magnetic composites (HNT/Fe3O4) to remove the antibiotic ofloxacin (OFL) from waters. The chemical-physical features of the obtained materials were characterized through the application of diverse techniques (XRPD, FT-IR spectroscopy, SEM, EDS, and TEM microscopy, thermogravimetric analysis, and magnetization measurements), while ecotoxicity was assessed through a standard test on the freshwater organism Daphnia magna. Independently of the synthesis procedure, the magnetic composites were successfully obtained. The Fe3O4 is nanometric (about 10 nm) and the weight percentage is sample-dependent. It decorates the HNT's surface and also forms aggregates linking the nanotubes in Fe3O4-rich samples. Thermodynamic and kinetic experiments showed different adsorption capacities of OFL, ranging from 23 to 45 mg g-1. The kinetic process occurred within a few minutes, independently of the composite. The capability of the three HNT/Fe3O4 in removing the OFL was confirmed under realistic conditions, when OFL was added to tap, river, and effluent waters at µg L-1 concentration. No acute toxicity of the composites was observed on freshwater organisms. Despite the good results obtained for all the composites, the sample by co-precipitation is the most performant as it: (i) is easily magnetically separated from the media after the use; (ii) does not undergo any degradation after three adsorption cycles; (iii) is synthetized through a low-cost procedure. These features make this material an excellent candidate for removal of OFL from water.

11.
Artigo em Inglês | MEDLINE | ID: mdl-33546512

RESUMO

Two different zinc-based metal-organic frameworks (MOFs) were investigated to remove one of the most used fluoroquinolone antibiotic, Ofloxacin (OFL), from polluted water. The most common zeolitic imidazolate framework-8 (ZIF-8) and the green Zn(II) and benzene-1,3,5-tri-carboxylate (Zn3(BTC)2) were prepared through a facile synthetic route and characterized by means of Fourier-Transform Infrared (FT-IR) Spectroscopy, X-ray Powder Diffraction (XRPD), and Scanning Electron Microscopy (SEM) analyses. The two MOFs were compared in terms of both adsorption and kinetic aspects under real conditions (tap water, natural pH). Results showed that OFL was adsorbed in remarkable amounts, 95 ± 10 and 25.3 ± 0.8 mg g-1 on ZIF-8 and Zn3(BTC)2, respectively, following different mechanisms. Specifically, a Langmuir model well described the ZIF-8 profile, while for Zn3(BTC)2, cooperative adsorption occurred. Moreover the kinetic results were quite different, pseudo-second-order and sigmoidal, respectively. The suitability of ZIF-8 and Zn3(BTC)2 as adsorbent phases for water depollution was tested on tap water samples spiked with OFL 10 µg L-1. The obtained removal efficiencies, of 88% for ZIF-8 and 72% for Zn3(BTC)2, make these materials promising candidates for removing fluoroquinolone antibiotics (FQs) from polluted waters, notwithstanding their limited reusability in tap water, as demonstrated by in-depth characterization of the two MOFs after usage.


Assuntos
Estruturas Metalorgânicas , Poluentes Químicos da Água , Zeolitas , Adsorção , Ofloxacino , Espectroscopia de Infravermelho com Transformada de Fourier , Poluentes Químicos da Água/análise , Zinco
12.
J Pharm Sci ; 110(11): 3690-3701, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34391761

RESUMO

The Zaltoprofen/4,4'-Bipyridine system gives rise to two co-crystals of different compositions both endowed - in water and in buffer solution at pH 4.5 - with considerably higher solubility and dissolution rate than the pure drug. The qualitative and quantitative analysis of the DSC measurements, carried out on samples made up of mixtures prepared according to different methodologies, allows us to elaborate and propose an accurate thermodynamic model that fully takes into account the qualitative aspects of the complex experimental framework and which provides quantitative predictions (reaction enthalpies and compositions of the co-crystals) in excellent agreement with the experimental results. Co-crystal formation and cocrystal compositions were confirmed by X-ray diffraction measurements as well as by FT-IR and NMR spectroscopy measurements. The quantitative processing of DSC measurements rationalizes and deepens the scientific aspects underlying the so-called Tammann's triangle and constitutes a model of general validity. The work shows that DSC has enormous potential, which however can be fully exploited only by paying adequate attention to the experimental aspects and the quantitative processing of the measurements.


Assuntos
Preparações Farmacêuticas , Benzopiranos , Varredura Diferencial de Calorimetria , Cristalização , Difração de Pó , Propionatos , Piridinas , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
13.
Nanomaterials (Basel) ; 11(12)2021 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-34947624

RESUMO

A simple not solvent and time consuming Fe3O4@MIL-100(Fe), synthesized in the presence of a small amount of magnetite (Fe3O4) nanoparticles (27.3 wt%), is here presented and discussed. Layer-by-layer alone (20 shell), and combined layer-by-layer (5 shell)/reflux or /hydrothermal synthetic procedures were compared. The last approach (Fe3O4@MIL-100_H sample) is suitable (i) to obtain rounded-shaped nanoparticles (200-400 nm diameter) of magnetite core and MIL-100(Fe) shell; (ii) to reduce the solvent and time consumption (the layer-by-layer procedure is applied only 5 times); (iii) to give the highest MIL-100(Fe) amount in the composite (72.7 vs. 18.5 wt% in the layer-by-layer alone); (iv) to obtain a high surface area of 3546 m2 g-1. The MIL-100(Fe) sample was also synthesized and both materials were tested for the absorption of Ofloxacin antibiotic (OFL). Langmuir model well describes OFL adsorption on Fe3O4@MIL-100_H, indicating an even higher adsorption capacity (218 ± 7 mg g-1) with respect to MIL-100 (123 ± 5 mg g-1). Chemisorption regulates the kinetic process on both the composite materials. Fe3O4@MIL-100_H performance was then verified for OFL removal at µg per liter in tap and river waters, and compared with MIL-100. Its relevant and higher adsorption efficiency and the magnetic behavior make it an excellent candidate for environmental depollution.

14.
J Phys Chem Lett ; 9(20): 6072-6076, 2018 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-30277785

RESUMO

A detailed characterization of the polymorphs constituting cathode materials, both before and after cell cycling, is mandatory to develop more stable and powerful lithium batteries. In many cases, e.g., for transition metal lithium silicates, standard diffraction techniques cannot give a clear-cut response. Here we show that broadband adiabatic fast MAS NMR can give unique information in the case of model Li2(Mn,Fe)SiO4 high-capacity cathode materials. By coupling 7Li and 29Si 1D and 2D spectra, we are able to address polymorphs speciation also in the mixed Mn/Fe compositions, which is a nearly impossible task for X-rays and neutrons diffraction. We finally discuss the conditions under which this approach is useful when applied to rare nuclei such as 29Si.

15.
J Pharm Sci ; 107(1): 267-272, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28987499

RESUMO

The development of efficient strategies for drug delivery is considerably desired. Indeed, often several issues such as the drug solubility, the control of the drug release rate, the targeted delivery of drugs, the drug bioavailability, and the minimization of secondary effects still present great obstacles. Different methodologies have been proposed, but the use of nano-hybrids compounds that combine organic and inorganic substances seems particularly promising. An interesting inorganic host is the layered double hydroxide (LDH) with a sheets structure and formula [M2+1-x M3+x (OH)2](An-)x/n yH2O (M2+ = Zn, Mg; M3+ = Al; An- = nitrates, carbonates, chlorides). The possibility to exchange these counterions with drug molecules makes these systems ideal candidates for the drug delivery. In this article, we synthesize by co-precipitation method the hybrid compound Carprofen-Zn2Al-LDH. Carprofen, a poorly soluble anti-inflammatory drug, could also benefit of the association with a natural antacid such as LDH, to reduce the gastric irritation after its administration. Through X-ray diffraction and Fourier-transformed infrared spectroscopy (FT-IR), we could verify the effective drug intercalation into LDH. The dissolution tests clearly demonstrate a significant improvement of the drug release rate when carprofen is in the form of hybrid compound.


Assuntos
Hidróxido de Alumínio/química , Carbazóis/química , Hidróxidos/química , Sistemas de Liberação de Medicamentos/métodos , Liberação Controlada de Fármacos , Nanopartículas/química , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Difração de Raios X/métodos
16.
Dalton Trans ; 47(44): 15816-15826, 2018 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-30357185

RESUMO

FeNb11O29 is an intriguing and promising material that has been emerging in the last few years. It is isostructural with Nb12O29, one of the rare compounds in which Nb displays a local magnetic moment and shows both antiferromagnetic ordering and metallic conductivity at low temperatures. Both the two polymorphic monoclinic and orthorhombic forms have a mono-dimensional magnetic arrangement, but the different disposition of the structural building blocks leads to a strong frustration phenomenon of the magnetic order in the high-temperature orthorhombic form. Whereas Nb12O29 has been widely studied, barely few magnetic data can be found on its analogous FeNb11O29, for which a role of the Fe3+ localized d electrons in affecting the original magnetic behaviour can be foreseen. In this paper, we report how we synthesized undoped and, for the first time, Mn- and V-doped FeNb11O29. Both the monoclinic and orthorhombic polymorphs, stable in different temperature ranges, were then thoroughly structurally characterized. With the help of micro-Raman spectroscopy, we investigated the differences introduced into the vibrational levels by doping, while EPR data allowed us to obtain information on the transition metal ions and to point out the related peculiar structural features. Static magnetization measurements evidenced the paramagnetic character of the compounds and the high-spin configuration of Fe3+ ions.

17.
J Pharm Sci ; 96(1): 156-67, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16960825

RESUMO

The anhydrous sodium naproxen (ASN) can form several hydrated phases if maintained at different relative humidities (RH). The water uptake can promote crystallographic modifications, according to the amount of water. In a previous work, the authors showed that a dihydrated form could be obtained either by crystallization in water or by exposure of the anhydrous form to a RH of 55%. In the present work, the authors report about the formation and characterization of a new tetrahydrated form, obtained by exposing the ASN to RH >or= 75%. All the hydrated compounds were characterized by the combined use of several spectroscopic, thermal, and crystallographic techniques. The thermal stability of both the dihydrated and tetrahydrated compounds was also tested.


Assuntos
Anti-Inflamatórios não Esteroides/química , Naproxeno/química , Sódio/química , Água/química , Varredura Diferencial de Calorimetria , Química Farmacêutica , Cristalografia por Raios X , Dessecação , Estabilidade de Medicamentos , Umidade , Espectroscopia de Ressonância Magnética , Pós , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura , Termodinâmica , Termogravimetria , Fatores de Tempo
18.
Sci Rep ; 6: 27896, 2016 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-27293181

RESUMO

Improving cathode materials is mandatory for next-generation Li-ion batteries. Exploring polyanion compounds with high theoretical capacity such as the lithium metal orthosilicates, Li2MSiO4 is of great importance. In particular, mixed silicates represent an advancement with practical applications. Here we present results on a rapid solid state synthesis of mixed Li2(FeMnCo)SiO4 samples in a wide compositional range. The solid solution in the P21/n space group was found to be stable for high iron concentration or for a cobalt content up to about 0.3 atom per formula unit. Other compositions led to a mixture of polymorphs, namely Pmn21 and Pbn21. All the samples contained a variable amount of Fe(3+) ions that was quantified by Mössbauer spectroscopy and confirmed by the TN values of the paramagnetic to antiferromagnetic transition. Preliminary characterization by cyclic voltammetry revealed the effect of Fe(3+) on the electrochemical response. Further work is required to determine the impact of these electrode materials on lithium batteries.

19.
Sci Rep ; 3: 3452, 2013 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-24316682

RESUMO

Transition metal-based lithium orthosilicates (Li2MSiO4, M = Fe, Ni, Co, Mn) are gaining a wide interest as cathode materials for lithium-ion batteries. These materials present a very complex polymorphism that could affect their physical properties. In this work, we synthesized the Li2FeSiO4 and Li2MnSiO4 compounds by a sol-gel method at different temperatures. The samples were investigated by XRPD, TEM, (7)Li MAS NMR, and magnetization measurements, in order to characterize the relationships between crystal structure and magnetic properties. High-quality (7)Li MAS NMR spectra were used to determine the silicate structure, which can otherwise be hard to study due to possible mixtures of different polymorphs. The magnetization study revealed that the Néel temperature does not depend on the polymorph structure for both iron and manganese lithium orthosilicates.

20.
Artigo em Inglês | MEDLINE | ID: mdl-23873061

RESUMO

This paper describes the structure and properties of the drug domperidone and a novel 1:1 domperidone succinate salt. The new salt is characterized by means of thermal, spectroscopic, microscopic and powder diffraction measurements. The crystal structures of the salt and, for the first time, of pure domperidone have been determined by means of single-crystal X-ray diffraction. In both structures, the piperidine ring of domperidone adopts the expected chair conformation, and supramolecular centrosymmetric R2(2)(8) motifs are formed by N-H...O hydrogen bonds between chlorine-substituted oxobenzimidazolyl groups. Further N-H...O hydrogen bonds occur between non-substituted oxobenzimidazolyl groups and the resulting C(4) motifs originates hydrogen-bonded chains, extending along the crystallographic b axis. In the salt, a single N-H...O hydrogen bond forms between the protonated nitrogen of the piperidine ring and the carboxylic O atom of the succinate ion. Two alternative and mutually exclusive positions for the nonsubstituted oxobenzimidazolyl group have also been observed; this disorder makes the hydrogen-bonded chains originating from the bicyclic group polar. The dissolution behaviour of the salt in dosage form is compared with two reference commercial products. The salt shows an increased solubility, a characteristic that could be of great advantage from a pharmaceutical view point.


Assuntos
Domperidona/química , Ácido Succínico/química , Cristalografia por Raios X , Ligação de Hidrogênio , Modelos Moleculares , Estrutura Molecular , Sais/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa