Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Microb Biotechnol ; 14(4): 1847-1856, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33624940

RESUMO

Spray-induced gene silencing (SIGS) using topical dsRNA applications has risen as a promising, target-specific, and environmentally friendly disease management strategy against phytopathogenic fungi. However, dsRNA stability, efficacy, and scalability are still the main constraints facing SIGS broader application. Here we show that Escherichia coli-derived anucleated minicells can be utilized as a cost-effective, scalable platform for dsRNA production and encapsulation. We demonstrated that minicell-encapsulated dsRNA (ME-dsRNA) was shielded from RNase degradation and stabilized on strawberry surfaces, allowing dsRNA persistence in field-like conditions. ME-dsRNAs targeting chitin synthase class III (Chs3a, Chs3b) and DICER-like proteins (DCL1 and DCL2) genes of Botryotinia fuckeliana selectively knocked-down the target genes and led to significant fungal growth inhibition in vitro. We also observed a compensatory relationship between DCL1 and DCL2 gene transcripts, where the silencing of one gene upregulated the expression of the other. Contrary to naked-dsRNAs, ME-dsRNAs halted disease progression in strawberries for 12 days under greenhouse conditions. These results elucidate the potential of ME-dsRNAs to enable the commercial application of RNAi-based, species-specific biocontrols comparable in efficacy to conventional synthetics. ME-dsRNAs offer a platform that can readily be translated to large-scale production and deployed in open-field applications to control grey mould in strawberries.


Assuntos
Proteção de Cultivos , Doenças das Plantas , Botrytis , Fungos , Doenças das Plantas/prevenção & controle , Interferência de RNA
2.
Food Funct ; 8(9): 3374-3382, 2017 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-28861555

RESUMO

In this work we characterize the interaction of cranberry (Vaccinium macrocarpon) proanthocyanidins (PAC) with bovine serum albumin (BSA) and hen egg-white lysozyme (HEL) and determine the effects of these complexes on macrophage activation and antigen presentation. We isolated PAC from cranberry and complexed the isolated PAC with BSA and HEL. The properties of the PAC-protein complexes were studied by matrix assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS), gel electrophoresis and zeta-potential. The effects of PAC-BSA complexes on macrophage activation were studied in RAW 264.7 macrophage like cells after treatment with lipopolysaccharide (LPS). Fluorescence microscopy was used to study the endocytosis of PAC-BSA complexes. The effects of the PAC complexes on macrophage antigen presentation were studied in an in vitro model of HEL antigen presentation by mouse peritoneal mononuclear cells to a T-cell hybridoma. The mass spectra of the PAC complexes with BSA and HEL differed from the spectra of the proteins alone by the presence of broad shoulders on the singly and doubly charged protein peaks. Complexation with PAC altered the electrophoretic mobility shift assay in native agarose gel and the electrophoretic mobility (ζ-potential) values. These results indicate that the PAC-protein complexes are stable and alter the protein structure without precipitating the protein. Fluorescence microscopy showed that the RAW 264.7 macrophages endocytosed BSA and PAC-BSA complexes in discrete vesicles that surrounded the nucleus. Macrophages treated with increasing amounts of PAC-BSA complexes had significantly reduced COX-2 and iNOS expression in response to treatment with lipopolysaccharide (LPS) in comparison to the controls. The PAC-HEL complexes modulated antigen uptake, processing and presentation in murine peritoneal macrophages. After 4 h of pre-incubation, only trace amounts of IL-2 were detected in the co-cultures treated with HEL alone, whereas the PAC-HEL complex had already reached the maximum IL-2 expression. Cranberry PAC may increase the rate of endocytosis of HEL and subsequent expression of IL-2 by the T-cell hybridomas. These results suggest that PAC-protein complexes modulate aspects of innate and acquired immune responses in macrophages.


Assuntos
Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Muramidase/química , Extratos Vegetais/farmacologia , Proantocianidinas/farmacologia , Soroalbumina Bovina/química , Vaccinium macrocarpon/química , Animais , Apresentação de Antígeno/efeitos dos fármacos , Feminino , Ativação de Macrófagos/efeitos dos fármacos , Camundongos , Extratos Vegetais/química , Proantocianidinas/química , Células RAW 264.7 , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa