Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
N Engl J Med ; 384(21): 2002-2013, 2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-33974366

RESUMO

BACKGROUND: Severe combined immunodeficiency due to adenosine deaminase (ADA) deficiency (ADA-SCID) is a rare and life-threatening primary immunodeficiency. METHODS: We treated 50 patients with ADA-SCID (30 in the United States and 20 in the United Kingdom) with an investigational gene therapy composed of autologous CD34+ hematopoietic stem and progenitor cells (HSPCs) transduced ex vivo with a self-inactivating lentiviral vector encoding human ADA. Data from the two U.S. studies (in which fresh and cryopreserved formulations were used) at 24 months of follow-up were analyzed alongside data from the U.K. study (in which a fresh formulation was used) at 36 months of follow-up. RESULTS: Overall survival was 100% in all studies up to 24 and 36 months. Event-free survival (in the absence of reinitiation of enzyme-replacement therapy or rescue allogeneic hematopoietic stem-cell transplantation) was 97% (U.S. studies) and 100% (U.K. study) at 12 months; 97% and 95%, respectively, at 24 months; and 95% (U.K. study) at 36 months. Engraftment of genetically modified HSPCs persisted in 29 of 30 patients in the U.S. studies and in 19 of 20 patients in the U.K. study. Patients had sustained metabolic detoxification and normalization of ADA activity levels. Immune reconstitution was robust, with 90% of the patients in the U.S. studies and 100% of those in the U.K. study discontinuing immunoglobulin-replacement therapy by 24 months and 36 months, respectively. No evidence of monoclonal expansion, leukoproliferative complications, or emergence of replication-competent lentivirus was noted, and no events of autoimmunity or graft-versus-host disease occurred. Most adverse events were of low grade. CONCLUSIONS: Treatment of ADA-SCID with ex vivo lentiviral HSPC gene therapy resulted in high overall and event-free survival with sustained ADA expression, metabolic correction, and functional immune reconstitution. (Funded by the National Institutes of Health and others; ClinicalTrials.gov numbers, NCT01852071, NCT02999984, and NCT01380990.).


Assuntos
Agamaglobulinemia/terapia , Terapia Genética/métodos , Vetores Genéticos , Transplante de Células-Tronco Hematopoéticas , Lentivirus/genética , Imunodeficiência Combinada Severa/terapia , Adenosina Desaminase/deficiência , Adolescente , Criança , Pré-Escolar , Terapia Genética/efeitos adversos , Humanos , Lactente , Contagem de Linfócitos , Intervalo Livre de Progressão , Estudos Prospectivos , Transplante Autólogo
2.
Blood ; 138(15): 1304-1316, 2021 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-33974038

RESUMO

Patients lacking functional adenosine deaminase activity have severe combined immunodeficiency (ADA SCID), which can be treated with ADA enzyme replacement therapy (ERT), allogeneic hematopoietic stem cell transplantation (HSCT), or autologous HSCT with gene-corrected cells (gene therapy [GT]). A cohort of 10 ADA SCID patients, aged 3 months to 15 years, underwent GT in a phase 2 clinical trial between 2009 and 2012. Autologous bone marrow CD34+ cells were transduced ex vivo with the MND (myeloproliferative sarcoma virus, negative control region deleted, dl587rev primer binding site)-ADA gammaretroviral vector (gRV) and infused following busulfan reduced-intensity conditioning. These patients were monitored in a long-term follow-up protocol over 8 to 11 years. Nine of 10 patients have sufficient immune reconstitution to protect against serious infections and have not needed to resume ERT or proceed to secondary allogeneic HSCT. ERT was restarted 6 months after GT in the oldest patient who had no evidence of benefit from GT. Four of 9 evaluable patients with the highest gene marking and B-cell numbers remain off immunoglobulin replacement therapy and responded to vaccines. There were broad ranges of responses in normalization of ADA enzyme activity and adenine metabolites in blood cells and levels of cellular and humoral immune reconstitution. Outcomes were generally better in younger patients and those receiving higher doses of gene-marked CD34+ cells. No patient experienced a leukoproliferative event after GT, despite persisting prominent clones with vector integrations adjacent to proto-oncogenes. These long-term findings demonstrate enduring efficacy of GT for ADA SCID but also highlight risks of genotoxicity with gRVs. This trial was registered at www.clinicaltrials.gov as #NCT00794508.


Assuntos
Agamaglobulinemia/terapia , Terapia Genética , Imunodeficiência Combinada Severa/terapia , Adenosina Desaminase/genética , Adolescente , Agamaglobulinemia/genética , Criança , Pré-Escolar , Seguimentos , Terapia Genética/métodos , Transplante de Células-Tronco Hematopoéticas/métodos , Humanos , Lactente , Imunodeficiência Combinada Severa/genética , Transplante Autólogo/métodos , Resultado do Tratamento
3.
Blood ; 129(19): 2624-2635, 2017 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-28351939

RESUMO

Retroviral gene therapy has proved efficacious for multiple genetic diseases of the hematopoietic system, but roughly half of clinical gene therapy trial protocols using gammaretroviral vectors have reported leukemias in some of the patients treated. In dramatic contrast, 39 adenosine deaminase-deficient severe combined immunodeficiency (ADA-SCID) patients have been treated with 4 distinct gammaretroviral vectors without oncogenic consequence. We investigated clonal dynamics and diversity in a cohort of 15 ADA-SCID children treated with gammaretroviral vectors and found clear evidence of genotoxicity, indicated by numerous common integration sites near proto-oncogenes and by increased abundance of clones with integrations near MECOM and LMO2 These clones showed stable behavior over multiple years and never expanded to the point of dominance or dysplasia. One patient developed a benign clonal dominance that could not be attributed to insertional mutagenesis and instead likely resulted from expansion of a transduced natural killer clone in response to chronic Epstein-Barr virus viremia. Clonal diversity and T-cell repertoire, measured by vector integration site sequencing and T-cell receptor ß-chain rearrangement sequencing, correlated significantly with the amount of busulfan preconditioning delivered to patients and to CD34+ cell dose. These data, in combination with results of other ADA-SCID gene therapy trials, suggest that disease background may be a crucial factor in leukemogenic potential of retroviral gene therapy and underscore the importance of cytoreductive conditioning in this type of gene therapy approach.


Assuntos
Adenosina Desaminase/deficiência , Agamaglobulinemia/genética , Agamaglobulinemia/terapia , Antineoplásicos Alquilantes/uso terapêutico , Bussulfano/uso terapêutico , Gammaretrovirus/genética , Terapia Genética/métodos , Vetores Genéticos/uso terapêutico , Imunodeficiência Combinada Severa/genética , Imunodeficiência Combinada Severa/terapia , Proteínas Adaptadoras de Transdução de Sinal/genética , Adenosina Desaminase/genética , Agamaglobulinemia/patologia , Criança , Proteínas de Ligação a DNA/genética , Vetores Genéticos/genética , Humanos , Proteínas com Domínio LIM/genética , Proteína do Locus do Complexo MDS1 e EVI1 , Proteínas Proto-Oncogênicas/genética , Proto-Oncogenes/genética , Imunodeficiência Combinada Severa/patologia , Linfócitos T/citologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo , Linfócitos T/patologia , Fatores de Transcrição/genética
4.
J Clin Immunol ; 37(7): 626-637, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28842866

RESUMO

Deficiency of adenosine deaminase (ADA, EC3.5.4.4), a housekeeping enzyme of purine metabolism encoded by the Ada gene, is a cause of human severe combined immune deficiency (SCID). Numerous deleterious mutations occurring in the ADA gene have been found in patients with profound lymphopenia (T- B- NK-), thus underscoring the importance of functional purine metabolism for the development of the immune defense. While untreated ADA SCID is a fatal disorder, there are multiple life-saving therapeutic modalities to restore ADA activity and reconstitute protective immunity, including enzyme replacement therapy (ERT), allogeneic hematopoietic stem cell transplantation (HSCT) and gene therapy (GT) with autologous gene-corrected hematopoietic stem cells (HSC). We review the pathogenic mechanisms and clinical manifestations of ADA SCID.


Assuntos
Adenosina Desaminase/deficiência , Adenosina Desaminase/genética , Imunodeficiência Combinada Severa/genética , Animais , Modelos Animais de Doenças , Humanos
5.
Mol Ther Methods Clin Dev ; 20: 765-778, 2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33738330

RESUMO

Adenosine deaminase (ADA) deficiency is an inborn error of metabolism affecting multiple systems and causing severe combined immunodeficiency. We tested intravenous administration of recombinant adeno-associated virus (AAV) 2/8-ADA vector in ADA-deficient neonate and adult mice or as part of a bimodal approach comprised of rAAV treatment at birth followed by infusion of lentiviral vector (LV)-modified lineage-depleted bone marrow cells at 8 weeks. ADA-/- mice treated with rAAV and enzyme replacement therapy (ERT) for 30 days were rescued from the lethal pulmonary insufficiency, surviving out to 180 days without further treatment. rAAV vector copy number (VCN) was highest in liver, lung, and heart and was associated with near-normal ADA activity and thymocyte development. In the bimodal approach, rAAV-mediated ADA expression supported survival during the 4 weeks before infusion of the LV-modified bone marrow cells and during the engraftment period. Conditioning prior to infusion may have resulted in the replacement of rAAV marked cells in marrow and liver, with LV VCN 100- to 1,000-fold higher in hematopoietic tissue compared with rAAV VCN, and was associated with immune cell reconstitution. In conclusion, a bimodal approach may be an alternative for patients without reliable access to ERT before receiving a stem cell transplant or gene therapy.

6.
Mol Ther Methods Clin Dev ; 16: 78-93, 2020 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-31871959

RESUMO

Adenosine deaminase (ADA)-deficient mice and healthy rhesus monkeys were studied to determine the impact of age at treatment, vector dosage, dosing schedule, repeat administration, biodistribution, and immunogenicity after systemic delivery of lentiviral vectors (LVs). In Ada -/- mice, neonatal treatment resulted in broad vector marking across all tissues analyzed, whereas adult treatment resulted in marking restricted to the liver, spleen, and bone marrow. Intravenous administration to infant rhesus monkeys also resulted in dose-dependent marking in the liver, spleen, and bone marrow. Using an ELISA to monitor anti-vector antibody development, Ada -/- neonatal mice did not produce an antibody response, whereas Ada -/- adult mice produced a strong antibody response to vector administration. In mice and monkeys with repeat administration of LV, a strong anti-vector antibody response was shown in response to the second LV administration, which resulted in LV inactivation. Three separate doses administered to immune competent mice resulted in acute toxicity. Pegylation of the vesicular stomatitis virus G protein (VSV-G)-enveloped LVs showed a less robust anti-vector response but did not prevent the inactivation of the second LV administration. These studies identify important factors to consider related to age and timing of administration when implementing systemic delivery of LVs as a potential therapeutic agent.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa