Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 599
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Annu Rev Immunol ; 39: 131-166, 2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33481643

RESUMO

Dendritic cells (DCs) possess the ability to integrate information about their environment and communicate it to other leukocytes, shaping adaptive and innate immunity. Over the years, a variety of cell types have been called DCs on the basis of phenotypic and functional attributes. Here, we refocus attention on conventional DCs (cDCs), a discrete cell lineage by ontogenetic and gene expression criteria that best corresponds to the cells originally described in the 1970s. We summarize current knowledge of mouse and human cDC subsets and describe their hematopoietic development and their phenotypic and functional attributes. We hope that our effort to review the basic features of cDC biology and distinguish cDCs from related cell types brings to the fore the remarkable properties of this cell type while shedding some light on the seemingly inordinate complexity of the DC field.


Assuntos
Células Dendríticas , Imunidade Inata , Animais , Linhagem da Célula , Humanos , Camundongos
2.
Nat Immunol ; 25(3): 448-461, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38351322

RESUMO

Conventional dendritic cells (cDCs) include functionally and phenotypically diverse populations, such as cDC1s and cDC2s. The latter population has been variously subdivided into Notch-dependent cDC2s, KLF4-dependent cDC2s, T-bet+ cDC2As and T-bet- cDC2Bs, but it is unclear how all these subtypes are interrelated and to what degree they represent cell states or cell subsets. All cDCs are derived from bone marrow progenitors called pre-cDCs, which circulate through the blood to colonize peripheral tissues. Here, we identified distinct mouse pre-cDC2 subsets biased to give rise to cDC2As or cDC2Bs. We showed that a Siglec-H+ pre-cDC2A population in the bone marrow preferentially gave rise to Siglec-H- CD8α+ pre-cDC2As in tissues, which differentiated into T-bet+ cDC2As. In contrast, a Siglec-H- fraction of pre-cDCs in the bone marrow and periphery mostly generated T-bet- cDC2Bs, a lineage marked by the expression of LysM. Our results showed that cDC2A versus cDC2B fate specification starts in the bone marrow and suggest that cDC2 subsets are ontogenetically determined lineages, rather than cell states imposed by the peripheral tissue environment.


Assuntos
Células Dendríticas , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico , Animais , Camundongos , Diferenciação Celular
3.
Cell ; 184(15): 4016-4031.e22, 2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34081922

RESUMO

Cross-presentation of antigens from dead tumor cells by type 1 conventional dendritic cells (cDC1s) is thought to underlie priming of anti-cancer CD8+ T cells. cDC1 express high levels of DNGR-1 (a.k.a. CLEC9A), a receptor that binds to F-actin exposed by dead cell debris and promotes cross-presentation of associated antigens. Here, we show that secreted gelsolin (sGSN), an extracellular protein, decreases DNGR-1 binding to F-actin and cross-presentation of dead cell-associated antigens by cDC1s. Mice deficient in sGsn display increased DNGR-1-dependent resistance to transplantable tumors, especially ones expressing neoantigens associated with the actin cytoskeleton, and exhibit greater responsiveness to cancer immunotherapy. In human cancers, lower levels of intratumoral sGSN transcripts, as well as presence of mutations in proteins associated with the actin cytoskeleton, are associated with signatures of anti-cancer immunity and increased patient survival. Our results reveal a natural barrier to cross-presentation of cancer antigens that dampens anti-tumor CD8+ T cell responses.


Assuntos
Apresentação Cruzada/imunologia , Gelsolina/metabolismo , Imunidade , Lectinas Tipo C/metabolismo , Neoplasias/imunologia , Receptores Imunológicos/metabolismo , Receptores Mitogênicos/metabolismo , Actinas/metabolismo , Sequência de Aminoácidos , Animais , Antígenos de Neoplasias/metabolismo , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Apresentação Cruzada/efeitos dos fármacos , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/metabolismo , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Gelsolina/química , Gelsolina/deficiência , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Imunidade/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Mutação/genética , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/patologia , Ligação Proteica/efeitos dos fármacos , Análise de Sobrevida
4.
Mol Psychiatry ; 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39237722

RESUMO

Chronic stress exerts profound negative effects on cognitive and emotional behaviours and is a major risk factor for the development of neuropsychiatric disorders. However, the molecular links between chronic stress and its deleterious effects on neuronal and synaptic function remain elusive. Here, using a combination of in vitro and in vivo approaches, we demonstrate that the upregulation of miR-186-5p triggered by chronic stress may be a key mediator of such changes, leading to synaptic dysfunction. Our results show that the expression levels of miR-186-5p are increased both in the prefrontal cortex (PFC) of mice exposed to chronic stress and in cortical neurons chronically exposed to dexamethasone. Additionally, viral overexpression of miR-186-5p in the PFC of naïve mice induces anxiety- and depressive-like behaviours. The upregulation of miR-186-5p through prolonged glucocorticoid receptor activation in vitro, or in a mouse model of chronic stress, differentially affects glutamatergic and GABAergic synaptic transmission, causing an imbalance in excitation/inhibition that leads to altered neuronal network activity. At glutamatergic synapses, we observed both a reduction in synaptic AMPARs and synaptic transmission, whereas GABAergic synaptic transmission was strengthened. These changes could be rescued in vitro by a miR-186-5p inhibitor. Overall, our results establish a novel molecular link between chronic glucocorticoid receptor activation, the upregulation of miR-186-5p and the synaptic changes induced by chronic stress, that may be amenable to therapeutic intervention.

5.
Biometals ; 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38647983

RESUMO

Acanthamoeba spp. emerged as a clinically important pathogen related to amoebic keratitis. It is among the main causes of corneal transplantation and vision loss in ophthalmology. The treatment protocols have a low cure rate, high toxicity, and need for drug combination. Transition metal compounds have shown promising antiprotozoal effects. This study evaluates the amoebicidal activity of copper(II) coordination compounds in combination with chlorhexidine and the cytotoxicity to topical ocular application. These copper(II) coordination compounds were screened against Acanthamoeba castellanii trophozoites (ATCC 50492). The cytotoxicity on rabbit corneal cell line (ATCC-CCL 60) was performed. The compounds showed high amoebicidal potential, with inhibition of trophozoite viability above 80%. The Cp12 and Cp13 compounds showed Minimal Inhibitory Amoebicidal Concentration (MIAC) at 200 µM and mean inhibitory concentration (IC50) values lower than 10 µM. Against the cysts, Cp12 showed a reduction in viability (48%) in the longest incubation period. A synergistic effect for Cp12 with chlorhexidine was observed. The compounds have a dose-dependent effect against rabbit corneal cells. Compound Cp12 has potential for future application in developing ophthalmic formulations against Acanthamoeba keratitis and its use in multipurpose solutions is highlighted.

6.
Ann Hepatol ; 29(4): 101477, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38360269

RESUMO

INTRODUCTION AND OBJECTIVES: A high prevalence of steatotic liver disease has been described in psoriasis. However, the influence of genetic polymorphisms has yet to be investigated in this scenario. This study aims to determine the frequency of steatosis, advanced liver fibrosis and PNPLA3/TM6SF2 genotypes in individuals with psoriasis and to evaluate the impact of genetic polymorphisms, metabolic parameters and cumulative methotrexate dose on steatosis and fibrosis. MATERIALS AND METHODS: Cross-sectional study that prospectively included psoriasis outpatients, submitted to clinical and laboratory analysis, transient elastography (FibroScan®, Fr) and PNPLA3/TM6SF2 genotyping. Steatosis was defined by CAP ≥275 dB/m and advanced liver fibrosis as transient elastography ≥10 kPa. Logistic regression analysis evaluated the independent variables related to steatosis and fibrosis; p-value< 0.05 was considered significant. RESULTS: One hundred and ninety-nine patients were enrolled (age 54.6 ± 12.6 years, 57.3% female). Metabolic syndrome (MetS), steatosis and advanced liver fibrosis prevalence were 55.8%, 54.8% and 9%, respectively. PNPLA3 and TM6SF2 genotypes frequencies were CC 42.3%/CG 49.5%/GG 8.2% and CC 88.7%/ CT 11.3%/ TT 0%. MetS (OR3.01 95%CI 1.51-5.98; p = 0.002) and body mass index (OR1.17 95%CI 1.08-1.26; p < 0.01) were independently associated with steatosis. Diabetes Mellitus (T2DM) (OR10.76 95%CI 2.42-47.87; p = 0.002) and harboring at least one PNPLA3 G allele (OR5.66 95%CI 1.08-29.52; p = 0.039) were associated with advanced fibrosis, but not TM6SF2 polymorphism or cumulative MTX dose. CONCLUSIONS: MetS and T2DM confer higher odds for steatosis and advanced fibrosis in individuals with psoriasis. PNPLA3 G allele, but not TM6SF2 polymorphism, impacts a 5-fold odds of advanced liver fibrosis.


Assuntos
Técnicas de Imagem por Elasticidade , Lipase , Cirrose Hepática , Proteínas de Membrana , Psoríase , Humanos , Feminino , Masculino , Pessoa de Meia-Idade , Lipase/genética , Proteínas de Membrana/genética , Estudos Transversais , Cirrose Hepática/genética , Psoríase/genética , Adulto , Idoso , Estudos Prospectivos , Fígado Gorduroso/genética , Prevalência , Predisposição Genética para Doença , Fatores de Risco , Síndrome Metabólica/genética , Síndrome Metabólica/complicações , Polimorfismo Genético , Genótipo , Aciltransferases , Fosfolipases A2 Independentes de Cálcio
7.
Reprod Domest Anim ; 59(3): e14548, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38459830

RESUMO

The in vivo fertilization process occurs in the presence of follicular fluid (FF). The aim of this study was to evaluate the effect of in vitro fertilization medium supplementation with 5% or 10% bovine follicular fluid (BFF) on the production of in vitro bovine embryos. FF was collected from ovarian follicles with a diameter of 8-10 mm, and cumulus-oocyte complexes (COCs) were co-incubated with sperm for 24 h in the commercial medium BotuFIV® (BotuPharma©), being distributed among the experimental groups: oocytes fertilized in a control medium; oocytes fertilized in a medium supplemented with 5% BFF; and oocytes fertilized in a medium supplemented with 10% BFF. After fertilization, the zygotes were cultured in vitro for 8 days. Embryo development was assessed through cleavage rates (day 2) and blastocyst formation rates (day 8). The relative expression of the genes OCT4, IFNT2, BAX, HSP70 and SOD2 was measured using the real-time polymerase chain reaction method. There was no difference (p > .05) among the different experimental groups in terms of cleavage rates and blastocyst formation rates. Regarding the gene expression results, only the blastocysts from oocytes fertilized with 10% BFF showed significantly lower expression of IFNT2 (p = .003) and SOD2 (p = .01) genes compared to blastocysts from oocytes fertilized in control medium alone, while there was no difference between blastocyst from oocytes fertilized in control medium and the ones from oocytes fertilized with 5% BFF. In addition to this, the blastocysts from oocytes fertilized with 5% BFF showed significantly reduced levels of expression of the heat shock protein HSP70 (p < .001) and the pro-apoptotic protein BAX (p = .015) compared to blastocysts from oocytes fertilized with control medium. This may indicate that lower supplementation of BFF to the IVF medium creates a more suitable environment for fertilization and is less stressful for the zygote.


Assuntos
Fertilização in vitro , Líquido Folicular , Feminino , Masculino , Bovinos , Animais , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo , Fertilização in vitro/veterinária , Sêmen , Oócitos , Desenvolvimento Embrionário , Blastocisto/metabolismo , Proteínas de Choque Térmico HSP70/genética , Fertilização
8.
Physiol Mol Biol Plants ; 30(8): 1353-1362, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39184558

RESUMO

Progesterone (PROG) has been detected at various concentrations in the environment and has adverse effects on humans and wildlife. This work evaluated the impact of PROG in Solanum nigrum L. plants, its removal capacity, and how 2,4-epibrassinolide (24-EBL) affects this process. Three treatments were used: (1) control, (2) irrigation with 0.8 µM PROG, and (3) treatment with 0.8 µM PROG after a pre-treatment with a foliar application of 1 µM 2,4-EBL (PROG/24EBL). After 20 days of treatment, no PROG was detected in the nutrient solution or plant tissues, indicating that the PROG was removed and metabolized. Lipid peroxidation significantly decreased in response to PROG in shoots and roots, and this effect was even more significant for both organs of the PROG/24EBL plants. Additionally, both treatments in both organs showed a decrease in H2O2 levels, and both steroid hormones increased the plants' antioxidant system at both the biochemical and gene expression levels. In conclusion, S. nigrum can swiftly remove PROG without affecting its growth, and the use of 24-EBL synergistically decreases oxidative damage by increasing the activity of the antioxidant system and enhancing plant PROG removal ability.

9.
Hum Mol Genet ; 30(23): 2315-2331, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34245265

RESUMO

Glioblastoma (GB) is the most aggressive and common form of primary brain tumor characterized by fast proliferation, high invasion and resistance to current standard treatment. The average survival rate post-diagnosis is 14.6 months, despite the aggressive standard post-surgery radiotherapy concomitant with chemotherapy with temozolomide (TMZ). Currently, efforts are being endowed to develop new and more efficient therapeutic approaches capable to overcome chemoresistance, inhibit tumor progression and improve overall patient survival rate. Abnormal microRNA (miRNA) expression has been correlated with chemoresistance, proliferation and resistance to apoptosis, which result from their master regulatory role of gene expression. Altered cell metabolism, favoring glycolysis, was identified as an emerging cancer hallmark and has been described in GB, thus offering a new target for innovative GB therapies. In this work, we hypothesized that a gene therapy-based strategy consisting of the overexpression of a miRNA downregulated in GB and predicted to target crucial metabolic enzymes might promote a shift of GB cell metabolism, decreasing the glycolytic dependence of tumor cells and contributing to their sensitization to chemotherapy with TMZ. The increase of miR-200c levels in DBTRG cells resulted in downregulation of messenger RNA of enzymes involved in bioenergetics pathways and impaired cell metabolism and mobility. In addition, miR-200c overexpression prior to DBTRG cell exposure to TMZ resulted in cell cycle arrest. Overall, our results show that miR-200c overexpression could offer a way to overcome chemoresistance developed by GB cells in response to current standard chemotherapy, providing an improvement to current GB standard treatment, with benefit for patient outcome.


Assuntos
Resistencia a Medicamentos Antineoplásicos/genética , Metabolismo Energético , Glioblastoma/genética , Glioblastoma/metabolismo , MicroRNAs/genética , Antineoplásicos/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Glucose/metabolismo , Glutamina/metabolismo , Humanos , Interferência de RNA , RNA Mensageiro
10.
Hum Mol Genet ; 30(3-4): 160-171, 2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33438013

RESUMO

Despite the intense global efforts towards an effective treatment of glioblastoma (GB), current therapeutic options are unsatisfactory with a median survival time of 12-15 months after diagnosis, which has not improved significantly over more than a decade. The high tumoral heterogeneity confers resistance to therapies, which has hindered a successful clinical outcome, GB remaining among the deadliest cancers. A hallmark of GB is its high recurrence rate, which has been attributed to the presence of a small subpopulation of tumor cells called GB stem-like cells (GSC). In the present work, the efficacy of a multimodal strategy combining microRNA (miRNA) modulation with new generation multitargeted tyrosine kinase inhibitors (imatinib and axitinib) was investigated aiming at tackling this subpopulation of GB cells. MiR-128 and miR-302a were selected as attractive therapeutic candidates on the basis of previous findings reporting that reestablishment of their decreased expression levels in GSC resulted in cell differentiation, which could represent a possible strategy to sensitize GSC to chemotherapy. Our results show that overexpression of miR-128 or miR-302a induced GSC differentiation, which enhanced senescence mediated by axitinib treatment, thus further impairing GSC proliferation. We also provided evidence for the capacity of GSC to efficiently internalize functionalized stable nucleic acid lipid particles, previously developed and successfully applied in our laboratory to target GB. Taken together, our findings will be important in the future design of a GB-targeted multimodal miRNA-based gene therapy, combining overexpression of miR-128 or miR-302a with axitinib treatment, endowed with the ability to overcome drug resistance.


Assuntos
Axitinibe/uso terapêutico , Diferenciação Celular , Glioblastoma/tratamento farmacológico , MicroRNAs/metabolismo , Células-Tronco Neoplásicas/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Axitinibe/farmacologia , Linhagem Celular Tumoral , Terapia Combinada , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/fisiopatologia , Humanos , Mesilato de Imatinib/farmacologia , MicroRNAs/genética , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/fisiologia , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa