Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
J Immunol ; 209(5): 926-937, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36130130

RESUMO

Ab-secreting cells survive in niche microenvironments, but cellular responses driven by particular niche signals are incompletely defined. The TNF superfamily member a proliferation-inducing ligand (APRIL) can support the maturation of transitory plasmablasts into long-lived plasma cells. In this study, we explore the biological programs established by APRIL in human plasmablasts. Under conditions allowing the maturation of ex vivo- or in vitro-generated plasmablasts, we find that APRIL drives activation of ERK, p38, and JNK, accompanied by a classical NF-κB response and activation of the AKT/FOXO1 pathway. Time-course gene expression data resolve coordinated transcriptional responses propagated via immediate early genes and NF-κB targets and converging onto modules of genes enriched for MYC targets and metabolism/cell growth-related pathways. This response is shared between APRIL and an alternate TNF superfamily member CD40L but is not a feature of alternative niche signals delivered by IFN-α or SDF1. However, APRIL and CD40L responses also diverge. CD40L drives expression of genes related to the activated B cell state whereas APRIL does not. Thus, APRIL establishes a broad foundation for plasma cell longevity with features of cellular refueling while being uncoupled from support of the B cell state.


Assuntos
Ligante de CD40 , NF-kappa B , Humanos , NF-kappa B/metabolismo , Plasmócitos/metabolismo , Proteínas Proto-Oncogênicas c-akt , Membro 13 da Superfamília de Ligantes de Fatores de Necrose Tumoral
2.
J Immunol ; 208(2): 514-525, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34911772

RESUMO

Upon encounter with Ag, B cells undergo a sequential process of differentiation to become Ab-secreting plasma cells. Although the key drivers of differentiation have been identified, research has been limited by the lack of in vitro models recapitulating the full process for murine B cells. In this study, we describe methodology using BCR or TLR ligation to obtain plasma cells that are phenotypically mature, have exited cell cycle and express a gene signature concordant with long-lived plasma cells. Dependent on the initial stimuli, the transcriptomes also show variation including the enhanced expression of matrisome components after BCR stimulation, suggestive of unique functional properties for the resultant plasma cells. Moreover, using the new culture conditions we demonstrate that alternative promoter choice regulating the expression of the master transcription factor Blimp-1/Prdm1 can be observed; when the canonical B cell promoter for Prdm1 is deleted, differentiating B cells exhibit flexibility in the choice of promoter, dictated by the initiating stimulus, with preferential maintenance of expression following exposure to TLR ligation. Thus our system provides a readily tractable model for furthering our understanding of plasma cell biology.


Assuntos
Diferenciação Celular/imunologia , Plasmócitos/citologia , Plasmócitos/imunologia , Fator 1 de Ligação ao Domínio I Regulador Positivo/genética , Receptores de Antígenos de Linfócitos B/imunologia , Animais , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Regiões Promotoras Genéticas/genética , Transcriptoma/genética
3.
J Clin Immunol ; 43(7): 1543-1556, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37246174

RESUMO

BACKGROUND: The human CD19 antigen is expressed throughout B cell ontogeny with the exception of neoplastic plasma cells and a subset of normal plasma cells. CD19 plays a role in propagating signals from the B cell receptor and other receptors such as CXCR4 in mature B cells. Studies of CD19-deficient patients have confirmed its function during the initial stages of B cell activation and the production of memory B cells; however, its role in the later stages of B cell differentiation is unclear. OBJECTIVE: Using B cells from a newly identified CD19-deficient individual, we investigated the role of CD19 in the generation and function of plasma cells using an in vitro differentiation model. METHODS: Flow cytometry and long-read nanopore sequencing using locus-specific long-range amplification products were used to screen a patient with suspected primary immunodeficiency. Purified B cells from the patient and healthy controls were activated with CD40L, IL-21, IL-2, and anti-Ig, then transferred to different cytokine conditions to induce plasma cell differentiation. Subsequently, the cells were stimulated with CXCL12 to induce signalling through CXCR4. Phosphorylation of key downstream proteins including ERK and AKT was assessed by Western blotting. RNA-seq was also performed on in vitro differentiating cells. RESULTS: Long-read nanopore sequencing identified the homozygous pathogenic mutation c.622del (p.Ser208Profs*19) which was corroborated by the lack of CD19 cell surface staining. CD19-deficient B cells that are predominantly naïve generate phenotypically normal plasma cells with expected patterns of differentiation-associated genes and normal levels of CXCR4. Differentiated CD19-deficient cells were capable of responding to CXCL12; however, plasma cells derived from naïve B cells, both CD19-deficient and sufficient, had relatively diminished signaling compared to those generated from total B cells. Additionally, CD19 ligation on normal plasma cells results in AKT phosphorylation. CONCLUSION: CD19 is not required for generation of antibody-secreting cells or the responses of these populations to CXCL12, but may alter the response other ligands that require CD19 potentially affecting localization, proliferation, or survival. The observed hypogammaglobulinemia in CD19-deficient individuals is therefore likely attributable to the lack of memory B cells.


Assuntos
Antígenos CD19 , Plasmócitos , Humanos , Plasmócitos/metabolismo , Antígenos CD19/genética , Antígenos CD19/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Linfócitos B , Receptores de Antígenos de Linfócitos B , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo
4.
Br J Haematol ; 192(3): 599-604, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33249557

RESUMO

Cell-of-origin subclassification of diffuse large B cell lymphoma (DLBCL) into activated B cell-like (ABC), germinal centre B cell-like (GCB) and unclassified (UNC) or type III by gene expression profiling is recommended in the latest update of the World Health Organization's classification of lymphoid neoplasms. There is, however, no accepted gold standard method or dataset for this classification. Here, we compare classification results using gene expression data for 68 formalin-fixed paraffin-embedded DLBCL samples measured on four different gene expression platforms (Illumina wG-DASLTM arrays, Affymetrix PrimeView arrays, Illumina TrueSeq RNA sequencing and the HTG EdgeSeq DLBCL Cell of Origin Assay EU using an established platform agnostic classification algorithm (DAC) and the classifier native to the HTG platform, which is CE marked for in vitro diagnostic use (CE-IVD). Classification methods and platforms show a high level of concordance, with agreement in at least 80% of cases and rising to much higher levels for classifications of high confidence. Our results demonstrate that cell-of-origin classification by gene expression profiling on different platforms is robust, and that the use of the confidence value alongside the classification result is important in clinical applications.


Assuntos
Perfilação da Expressão Gênica , Linfoma Difuso de Grandes Células B/genética , Regulação Neoplásica da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Linfoma Difuso de Grandes Células B/classificação , Análise de Sequência com Séries de Oligonucleotídeos , RNA/genética , Transcriptoma
5.
J Immunol ; 202(4): 1287-1300, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30642980

RESUMO

Recurrent mutational activation of the MAP kinase pathway in plasma cell myeloma implicates growth factor-like signaling responses in the biology of Ab-secreting cells (ASCs). Physiological ASCs survive in niche microenvironments, but how niche signals are propagated and integrated is poorly understood. In this study, we dissect such a response in human ASCs using an in vitro model. Applying time course expression data and parsimonious gene correlation network analysis (PGCNA), a new approach established by our group, we map expression changes that occur during the maturation of proliferating plasmablast to quiescent plasma cell under survival conditions including the potential niche signal TGF-ß3. This analysis demonstrates a convergent pattern of differentiation, linking unfolded protein response/endoplasmic reticulum stress to secretory optimization, coordinated with cell cycle exit. TGF-ß3 supports ASC survival while having a limited effect on gene expression including upregulation of CXCR4. This is associated with a significant shift in response to SDF1 in ASCs with amplified ERK1/2 activation, growth factor-like immediate early gene regulation and EGR1 protein expression. Similarly, ASCs responding to survival conditions initially induce partially overlapping sets of immediate early genes without sustaining the response. Thus, in human ASCs growth factor-like gene regulation is transiently imposed by niche signals but is not sustained during subsequent survival and maturation.


Assuntos
Células Produtoras de Anticorpos/imunologia , Quimiocina CXCL12/imunologia , Fator de Crescimento Transformador beta3/imunologia , Sobrevivência Celular , Células Cultivadas , Quimiocina CXCL12/genética , Voluntários Saudáveis , Humanos , Fator de Crescimento Transformador beta3/genética
6.
J Pathol ; 248(2): 142-154, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30666658

RESUMO

The Epstein-Barr virus (EBV) is found almost exclusively in the activated B-cell (ABC) subtype of diffuse large B-cell lymphoma (DLBCL), yet its contribution to this tumour remains poorly understood. We have focused on the EBV-encoded latent membrane protein-1 (LMP1), a constitutively activated CD40 homologue expressed in almost all EBV-positive DLBCLs and which can disrupt germinal centre (GC) formation and drive lymphomagenesis in mice. Comparison of the transcriptional changes that follow LMP1 expression with those that follow transient CD40 signalling in human GC B cells enabled us to define pathogenic targets of LMP1 aberrantly expressed in ABC-DLBCL. These included the down-regulation of S1PR2, a sphingosine-1-phosphate (S1P) receptor that is transcriptionally down-regulated in ABC-DLBCL, and when genetically ablated leads to DLBCL in mice. Consistent with this, we found that LMP1-expressing primary ABC-DLBCLs were significantly more likely to lack S1PR2 expression than were LMP1-negative tumours. Furthermore, we showed that the down-regulation of S1PR2 by LMP1 drives a signalling loop leading to constitutive activation of the phosphatidylinositol-3-kinase (PI3-K) pathway. Finally, core LMP1-PI3-K targets were enriched for lymphoma-related transcription factors and genes associated with shorter overall survival in patients with ABC-DLBCL. Our data identify a novel function for LMP1 in aggressive DLBCL. Copyright © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Infecções por Vírus Epstein-Barr/virologia , Herpesvirus Humano 4/metabolismo , Linfoma Difuso de Grandes Células B/metabolismo , Receptores de Esfingosina-1-Fosfato/metabolismo , Proteínas da Matriz Viral/metabolismo , Antígenos CD40/genética , Antígenos CD40/metabolismo , Linhagem Celular Tumoral , Transformação Celular Viral , Bases de Dados Genéticas , Infecções por Vírus Epstein-Barr/mortalidade , Regulação Neoplásica da Expressão Gênica , Herpesvirus Humano 4/genética , Interações Hospedeiro-Patógeno , Humanos , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/mortalidade , Linfoma Difuso de Grandes Células B/virologia , Fosfatidilinositol 3-Quinase/metabolismo , Prognóstico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Receptores de Esfingosina-1-Fosfato/genética , Proteínas da Matriz Viral/genética
7.
Lancet Oncol ; 20(5): 649-662, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30948276

RESUMO

BACKGROUND: Biologically distinct subtypes of diffuse large B-cell lymphoma can be identified using gene-expression analysis to determine their cell of origin, corresponding to germinal centre or activated B cell. We aimed to investigate whether adding bortezomib to standard therapy could improve outcomes in patients with these subtypes. METHODS: In a randomised evaluation of molecular guided therapy for diffuse large B-cell lymphoma with bortezomib (REMoDL-B), an open-label, adaptive, randomised controlled, phase 3 superiority trial, participants were recruited from 107 cancer centres in the UK (n=94) and Switzerland (n=13). Eligible patients had previously untreated, histologically confirmed diffuse large B-cell lymphoma with sufficient diagnostic material from initial biopsies for gene-expression profiling and pathology review; were aged 18 years or older; had ECOG performance status of 2 or less; had bulky stage I or stage II-IV disease requiring full-course chemotherapy; had measurable disease; and had cardiac, lung, renal, and liver function sufficient to tolerate chemotherapy. Patients initially received one 21-day cycle of standard rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisolone (R-CHOP; rituximab 375 mg/m2, cyclophosphamide 750 mg/m2, doxorubicin 50 mg/m2, and vincristine 1·4 mg/m2 [to a maximum of 2 mg total dose] intravenously on day 1 of the cycle, and prednisolone 100 mg orally once daily on days 1-5). During this time, we did gene-expression profiling using whole genome cDNA-mediated annealing, selection, extension, and ligation assay of tissue from routine diagnostic biopsy samples to determine the cell-of-origin subtype of each participant (germinal centre B cell, activated B cell, or unclassified). Patients were then centrally randomly assigned (1:1) via a web-based system, with block randomisation stratified by international prognostic index score and cell-of-origin subtype, to continue R-CHOP alone (R-CHOP group; control), or with bortezomib (RB-CHOP group; experimental; 1·3 mg/m2 intravenously or 1·6 mg/m2 subcutaneously) on days 1 and 8 for cycles two to six. If RNA extracted from the diagnostic tissues was of insufficient quality or quantity, participants were given R-CHOP as per the control group. The primary endpoint was 30-month progression-free survival, for the germinal centre and activated B-cell population. The primary analysis was on the modified intention-to-treat population of activated and germinal centre B-cell population. Safety was assessed in all participants who were given at least one dose of study drug. We report the progression-free survival and safety outcomes for patients in the follow-up phase after the required number of events occurred. This study was registered at ClinicalTrials.gov, number NCT01324596, and recruitment and treatment has completed for all participants, with long-term follow-up ongoing. FINDINGS: Between June 2, 2011, and June 10, 2015, 1128 eligible patients were registered, of whom 918 (81%) were randomly assigned to receive treatment (n=459 to R-CHOP, n=459 to RB-CHOP), comprising 244 (26·6%) with activated B-cell disease, 475 (51·7%) with germinal centre B cell disease, and 199 (21·7%) with unclassified disease. At a median follow-up of 29·7 months (95% CI 29·0-32·0), we saw no evidence for a difference in progression-free survival in the combined germinal centre and activated B-cell population between R-CHOP and RB-CHOP (30-month progression-free survival 70·1%, 95% CI 65·0-74·7 vs 74·3%, 69·3-78·7; hazard ratio 0·86, 95% CI 0·65-1·13; p=0·28). The most common grade 3 or worse adverse event was haematological toxicity, reported in 178 (39·8%) of 447 patients given R-CHOP and 187 (42·1%) of 444 given RB-CHOP. However, RB-CHOP was not associated with increased haematological toxicity and 398 [87·1%] of 459 participants assigned to receive RB-CHOP completed six cycles of treatment. Grade 3 or worse neuropathy occurred in 17 (3·8%) patients given RB-CHOP versus eight (1·8%) given R-CHOP. Serious adverse events occurred in 190 (42·5%) patients given R-CHOP, including five treatment-related deaths, and 223 (50·2%) given RB-CHOP, including four treatment-related deaths. INTERPRETATION: This is the first large-scale study in diffuse large B-cell lymphoma to use real-time molecular characterisation for prospective stratification, randomisation, and subsequent analysis of biologically distinct subgroups of patients. The addition of bortezomib did not improve progression-free survival. FUNDING: Janssen-Cilag, Bloodwise, and Cancer Research UK.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Biomarcadores Tumorais/genética , Bortezomib/administração & dosagem , Perfilação da Expressão Gênica , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Inibidores de Proteassoma/administração & dosagem , Transcriptoma , Adulto , Idoso , Idoso de 80 Anos ou mais , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Bortezomib/efeitos adversos , Ciclofosfamida/administração & dosagem , Ciclofosfamida/efeitos adversos , Progressão da Doença , Doxorrubicina/administração & dosagem , Doxorrubicina/efeitos adversos , Feminino , Humanos , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/imunologia , Linfoma Difuso de Grandes Células B/mortalidade , Masculino , Pessoa de Meia-Idade , Prednisona/administração & dosagem , Prednisona/efeitos adversos , Intervalo Livre de Progressão , Inibidores de Proteassoma/efeitos adversos , Rituximab/administração & dosagem , Rituximab/efeitos adversos , Suíça , Fatores de Tempo , Reino Unido , Vincristina/administração & dosagem , Vincristina/efeitos adversos , Adulto Jovem
8.
J Allergy Clin Immunol ; 141(6): 2234-2248, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29128673

RESUMO

BACKGROUND: The homozygous K108E mutation of interferon regulatory factor 8 (IRF8) is reported to cause dendritic cell (DC) and monocyte deficiency. However, more widespread immune dysfunction is predicted from the multiple roles ascribed to IRF8 in immune cell development and function. OBJECTIVE: We sought to describe the effect on hematopoiesis and immunity of the compound heterozygous R83C/R291Q mutation of IRF8, which is present in a patient with recurrent viral infection, granuloproliferation, and intracerebral calcification. METHODS: Variant IRF8 alleles were identified by means of exome sequencing, and their function was tested by using reporter assays. The cellular phenotype was studied in detail by using flow cytometry, functional immunologic assay transcriptional profiling, and antigen receptor profiling. RESULTS: Both mutations affected conserved residues, and R291Q is orthologous to R294, which is mutated in the BXH2 IRF8-deficient mouse. R83C showed reduced nuclear translocation, and neither mutant was able to regulate the Ets/IRF composite element or interferon-stimulated response element, whereas R291Q retained BATF/JUN interactions. DC deficiency and monocytopenia were observed in blood, dermis, and lung lavage fluid. Granulocytes were consistently increased, dysplastic, and hypofunctional. Natural killer cell development and maturation were arrested. TH1, TH17, and CD8+ memory T-cell differentiation was significantly reduced, and T cells did not express CXCR3. B-cell development was impaired, with fewer memory cells, reduced class-switching, and lower frequency and complexity of somatic hypermutation. Cell-specific gene expression was widely disturbed in interferon- and IRF8-regulated transcripts. CONCLUSIONS: This analysis defines the clinical features of human biallelic IRF8 deficiency, revealing a complex immunodeficiency syndrome caused by DC and monocyte deficiency combined with widespread immune dysregulation.


Assuntos
Síndromes de Imunodeficiência/genética , Síndromes de Imunodeficiência/imunologia , Fatores Reguladores de Interferon/genética , Células Dendríticas/patologia , Humanos , Masculino , Monócitos/patologia , Mutação
9.
J Immunol ; 197(4): 1447-59, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27357150

RESUMO

Plasma cells (PCs) as effectors of humoral immunity produce Igs to match pathogenic insult. Emerging data suggest more diverse roles exist for PCs as regulators of immune and inflammatory responses via secretion of factors other than Igs. The extent to which such responses are preprogrammed in B-lineage cells or can be induced in PCs by the microenvironment is unknown. In this study, we dissect the impact of IFNs on the regulatory networks of human PCs. We show that core PC programs are unaffected, whereas PCs respond to IFNs with distinctive transcriptional responses. The IFN-stimulated gene 15 (ISG15) system emerges as a major transcriptional output induced in a sustained fashion by IFN-α in PCs and linked both to intracellular conjugation and ISG15 secretion. This leads to the identification of ISG15-secreting plasmablasts/PCs in patients with active systemic lupus erythematosus. Thus, ISG15-secreting PCs represent a distinct proinflammatory PC subset providing an Ig-independent mechanism of PC action in human autoimmunity.


Assuntos
Autoimunidade/imunologia , Citocinas/metabolismo , Lúpus Eritematoso Sistêmico/imunologia , Plasmócitos/imunologia , Transcriptoma , Ubiquitinas/metabolismo , Western Blotting , Citocinas/imunologia , ELISPOT , Citometria de Fluxo , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Interferon-alfa/imunologia , Plasmócitos/citologia , Plasmócitos/metabolismo , Ubiquitinas/imunologia
10.
Nucleic Acids Res ; 42(12): 7591-610, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24875472

RESUMO

Interferon regulatory factor 4 (IRF4) is central to the transcriptional network of activated B-cell-like diffuse large B-cell lymphoma (ABC-DLBCL), an aggressive lymphoma subgroup defined by gene expression profiling. Since cofactor association modifies transcriptional regulatory input by IRF4, we assessed genome occupancy by IRF4 and endogenous cofactors in ABC-DLBCL cell lines. IRF4 partners with SPIB, PU.1 and BATF genome-wide, but SPIB provides the dominant IRF4 partner in this context. Upon SPIB knockdown IRF4 occupancy is depleted and neither PU.1 nor BATF acutely compensates. Integration with ENCODE data from lymphoblastoid cell line GM12878, demonstrates that IRF4 adopts either SPIB- or BATF-centric genome-wide distributions in related states of post-germinal centre B-cell transformation. In primary DLBCL high-SPIB and low-BATF or the reciprocal low-SPIB and high-BATF mRNA expression links to differential gene expression profiles across nine data sets, identifying distinct associations with SPIB occupancy, signatures of B-cell differentiation stage and potential pathogenetic mechanisms. In a population-based patient cohort, SPIBhigh/BATFlow-ABC-DLBCL is enriched for mutation of MYD88, and SPIBhigh/BATFlow-ABC-DLBCL with MYD88-L265P mutation identifies a small subgroup of patients among this otherwise aggressive disease subgroup with distinct favourable outcome. We conclude that differential expression of IRF4 cofactors SPIB and BATF identifies biologically and clinically significant heterogeneity among ABC-DLBCL.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação Neoplásica da Expressão Gênica , Fatores Reguladores de Interferon/metabolismo , Linfoma Difuso de Grandes Células B/genética , Fatores de Transcrição/metabolismo , Linfócitos B/citologia , Sítios de Ligação , Diferenciação Celular , Linhagem Celular Tumoral , Humanos , Linfoma Difuso de Grandes Células B/metabolismo , Linfoma Difuso de Grandes Células B/mortalidade , Mutação , Fator 88 de Diferenciação Mieloide/genética , Motivos de Nucleotídeos , Proteínas Proto-Oncogênicas/metabolismo , Transativadores/metabolismo
11.
J Immunol ; 189(12): 5773-85, 2012 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-23162129

RESUMO

Plasma cells (PCs), the terminal effectors of humoral immunity, are short-lived unless supported by niche environments in which they may persist for years. No model system has linked B cell activation with niche function to allow the in vitro generation of long-lived PCs. Thus, the full trajectory of B cell terminal differentiation has yet to be investigated in vitro. In this article, we describe a robust model for the generation of polyclonal long-lived human PCs from peripheral blood B cells. After a proliferative plasmablast phase, PCs persist in the absence of cell division, with viability limited only by elective culture termination. Conservative predictions for PC life expectancy are 300 d, but with the potential for significantly longer life spans for some cells. These long-lived PCs are preferentially derived from memory B cells, and acquire a CD138(high) phenotype analogous to that of human bone marrow PCs. Analysis of gene expression across the system defines clusters of genes with related dynamics and linked functional characteristics. Importantly, genes in these differentiation clusters demonstrate a similar overall pattern of expression for in vitro and ex vivo PCs. In vitro PCs are fully reprogrammed to a secretory state and are adapted to their secretory load, maintaining IgG secretion of 120 pg/cell/day in the absence of XBP1 mRNA splicing. By establishing a set of conditions sufficient to allow the development and persistence of mature human PCs in vitro, to our knowledge, we provide the first platform with which to sequentially explore and manipulate each stage of human PC differentiation.


Assuntos
Diferenciação Celular/imunologia , Memória Imunológica , Plasmócitos/imunologia , Adulto , Subpopulações de Linfócitos B/citologia , Subpopulações de Linfócitos B/imunologia , Subpopulações de Linfócitos B/metabolismo , Células da Medula Óssea/citologia , Células da Medula Óssea/imunologia , Diferenciação Celular/genética , Células Cultivadas , Senescência Celular/genética , Senescência Celular/imunologia , Regulação da Expressão Gênica/imunologia , Humanos , Memória Imunológica/genética , Imunofenotipagem , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Plasmócitos/citologia , Plasmócitos/metabolismo , Valor Preditivo dos Testes , Fatores de Tempo
12.
Genome Biol ; 25(1): 45, 2024 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326875

RESUMO

BACKGROUND: Glioblastoma (GBM) brain tumors lacking IDH1 mutations (IDHwt) have the worst prognosis of all brain neoplasms. Patients receive surgery and chemoradiotherapy but tumors almost always fatally recur. RESULTS: Using RNA sequencing data from 107 pairs of pre- and post-standard treatment locally recurrent IDHwt GBM tumors, we identify two responder subtypes based on longitudinal changes in gene expression. In two thirds of patients, a specific subset of genes is upregulated from primary to recurrence (Up responders), and in one third, the same genes are downregulated (Down responders), specifically in neoplastic cells. Characterization of the responder subtypes indicates subtype-specific adaptive treatment resistance mechanisms that are associated with distinct changes in the tumor microenvironment. In Up responders, recurrent tumors are enriched in quiescent proneural GBM stem cells and differentiated neoplastic cells, with increased interaction with the surrounding normal brain and neurotransmitter signaling, whereas Down responders commonly undergo mesenchymal transition. ChIP-sequencing data from longitudinal GBM tumors suggests that the observed transcriptional reprogramming could be driven by Polycomb-based chromatin remodeling rather than DNA methylation. CONCLUSIONS: We show that the responder subtype is cancer-cell intrinsic, recapitulated in in vitro GBM cell models, and influenced by the presence of the tumor microenvironment. Stratifying GBM tumors by responder subtype may lead to more effective treatment.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/patologia , Recidiva Local de Neoplasia/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Encéfalo/patologia , Metilação de DNA , Regulação Neoplásica da Expressão Gênica , Microambiente Tumoral
13.
Cancers (Basel) ; 15(12)2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37370694

RESUMO

Epstein-Barr virus (EBV)-driven B cell neoplasms arise from the reactivation of latently infected B cells. In a subset of patients, EBV was seen to drive a polymorphous lymphoproliferative disorder (LPD) in which B cell differentiation was retained. In this work, spontaneous EBV reactivation following B cell mitogen stimulation was shown to provide a potential model of polymorphic EBV-driven LPD. Here, we developed an in vitro model of plasma cell (PC) differentiation from peripheral blood memory B cells. To assess the frequency and phenotypes of EBV-associated populations derived during differentiation, we analysed eight differentiations during the PC stage with a targeted single-cell gene expression panel. We identified subpopulations of EBV-gene expressing cells with PC and/or B cell expression features in differentiations from all tested donors. EBV-associated cells varied in frequency, ranging from 3-28% of cells. Most EBV-associated cells expressed PC genes such as XBP1 or MZB1, and in all samples these included a quiescent PC fraction that lacked cell a cycle gene expression. With increasing EBV-associated cells, populations with B cell features became prominent, co-expressing a germinal centre (GC) and activating B cell gene patterns. The presence of highly proliferative EBV-associated cells was linked to retained MS4A1/CD20 expression and IGHM and IGHD co-expression, while IGHM class-switched cells were enriched in quiescent PC fractions. Thus, patterns of gene expression in primary EBV reactivation were shown to include features related to GC B cells, which was also observed in EBV-transformed lymphoblastoid cell lines. This suggests a particular association between spontaneously developing EBV-expansions and IgM+ IgD+ non-switched B cells.

14.
Br J Haematol ; 159(4): 441-53, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22970711

RESUMO

This study tested the validity of whole-genome expression profiling (GEP) using RNA from formalin-fixed, paraffin-embedded (FFPE) tissue to sub-classify Diffuse Large B-cell Lymphoma (DLBCL), in a population based cohort of 172 patients. GEP was performed using Illumina Whole Genome cDNA-mediated Annealing, Selection, extension & Ligation, and tumours were classified into germinal centre (GCB), activated B-cell (ABC) and Type-III subtypes. The method was highly reproducible and reliably classified cell lines of known phenotype. GCB and ABC subtypes were each characterized by unique gene expression signatures consistent with previously published data. A significant relationship between subtype and survival was observed, with ABC having the worst clinical outcome and in a multivariate survival model only age and GEP class remained significant. This effect was not seen when tumours were classified by immunohistochemistry. There was a significant association between age and subtype (mean ages ABC - 72·8 years, GC - 68·4 years, Type-III - 64·5 years). Older patients with ABC subtype were also over-represented in patients who died soon after diagnosis. The relationship between prognosis and subtype improved when only patients assigned to the three categories with the highest level of confidence were analysed. This study demonstrates that GEP-based classification of DLBCL can be applied to RNA extracted from routine FFPE samples and has potential for use in stratified medicine trials and clinical practice.


Assuntos
Genoma Humano , Linfoma Difuso de Grandes Células B/classificação , Idoso , Feminino , Perfilação da Expressão Gênica/métodos , Estudo de Associação Genômica Ampla , Humanos , Imuno-Histoquímica , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/patologia , Masculino , Pessoa de Meia-Idade , Inclusão em Parafina , Prognóstico , Resultado do Tratamento
15.
Nucleic Acids Res ; 38(16): 5336-50, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20421211

RESUMO

The transcriptional repressor B lymphocyte-induced maturation protein-1 (BLIMP1) regulates gene expression and cell fate. The DNA motif bound by BLIMP1 in vitro overlaps with that of interferon regulatory factors (IRFs), which respond to inflammatory/immune signals. At such sites, BLIMP1 and IRFs can antagonistically regulate promoter activity. In vitro motif selection predicts that only a subset of BLIMP1 or IRF sites is subject to antagonistic regulation, but the extent to which antagonism occurs is unknown, since an unbiased assessment of BLIMP1 occupancy in vivo is lacking. To address this, we identified an extended set of promoters occupied by BLIMP1. Motif discovery and enrichment analysis demonstrate that multiple motif variants are required to capture BLIMP1 binding specificity. These are differentially associated with CpG content, leading to the observation that BLIMP1 DNA-binding is methylation sensitive. In occupied promoters, only a subset of BLIMP1 motifs overlap with IRF motifs. Conversely, a distinct subset of IRF motifs is not enriched amongst occupied promoters. Genes linked to occupied promoters containing overlapping BLIMP1/IRF motifs (e.g. AIM2, SP110, BTN3A3) are shown to constitute a dynamic target set which is preferentially activated by BLIMP1 knock-down. These data confirm and extend the competitive model of BLIMP1 and IRF interaction.


Assuntos
Regulação da Expressão Gênica , Regiões Promotoras Genéticas , Proteínas Repressoras/metabolismo , Sítios de Ligação , Ligação Competitiva , Linhagem Celular , Ilhas de CpG , Metilação de DNA , Humanos , Fatores Reguladores de Interferon/metabolismo , Fator 1 de Ligação ao Domínio I Regulador Positivo , Ligação Proteica , Análise de Sequência de DNA
16.
Plant J ; 61(4): 713-21, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19947983

RESUMO

Despite recent advances, accurate gene function prediction remains an elusive goal, with very few methods directly applicable to the plant Arabidopsis thaliana. In this study, we present GO-At (gene ontology prediction in A. thaliana), a method that combines five data types (co-expression, sequence, phylogenetic profile, interaction and gene neighbourhood) to predict gene function in Arabidopsis. Using a simple, yet powerful two-step approach, GO-At first generates a list of genes ranked in descending order of probability of functional association with the query gene. Next, a prediction score is automatically assigned to each function in this list based on the assumption that functions appearing most frequently at the top of the list are most likely to represent the function of the query gene. In this way, the second step provides an effective alternative to simply taking the 'best hit' from the first list, and achieves success rates of up to 79%. GO-At is applicable across all three GO categories: molecular function, biological process and cellular component, and can assign functions at multiple levels of annotation detail. Furthermore, we demonstrate GO-At's ability to predict functions of uncharacterized genes by identifying ten putative golgins/Golgi-associated proteins amongst 8219 genes of previously unknown cellular component and present independent evidence to support our predictions. A web-based implementation of GO-At (http://www.bioinformatics.leeds.ac.uk/goat) is available, providing a unique resource for plant researchers to make predictions for uncharacterized genes and predict novel functions in Arabidopsis.


Assuntos
Arabidopsis/genética , Biologia Computacional/métodos , Bases de Dados de Proteínas , Perfilação da Expressão Gênica/métodos , Genes de Plantas , Internet , Filogenia , Mapeamento de Interação de Proteínas/métodos , Interface Usuário-Computador
17.
Life Sci Alliance ; 3(10)2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32843533

RESUMO

The activated B-cell (ABC) to plasmablast transition encompasses the cusp of antibody-secreting cell (ASC) differentiation. We explore this transition with integrated analysis in human cells, focusing on changes that follow removal from CD40-mediated signals. Within hours of input signal loss, cell growth programs shift toward enhanced proliferation, accompanied by ER-stress response, and up-regulation of ASC features. Clustering of genomic occupancy for IRF4, BLIMP1, XBP1, and CTCF with histone marks identifies a dichotomy: XBP1 and IRF4 link to induced but not repressed gene modules in plasmablasts, whereas BLIMP1 links to modules of ABC genes that are repressed, but not to activated genes. Between ABC and plasmablast states, IRF4 shifts away from AP1/IRF composite elements while maintaining occupancy at IRF and ETS/IRF elements. This parallels the loss of BATF expression, which is identified as a potential BLIMP1 target. In plasmablasts, IRF4 acquires an association with CTCF, a feature maintained in plasma cell myeloma lines. Thus, shifting occupancy links IRF4 to both ABC and ASC gene expression, whereas BLIMP1 occupancy links to repression of the activation state.


Assuntos
Linfócitos B/citologia , Redes Reguladoras de Genes/genética , Plasmócitos/citologia , Adulto , Linfócitos B/metabolismo , Antígenos CD40/imunologia , Antígenos CD40/metabolismo , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Feminino , Humanos , Fatores Reguladores de Interferon/metabolismo , Ativação Linfocitária/fisiologia , Masculino , Fator 1 de Ligação ao Domínio I Regulador Positivo/metabolismo , Transdução de Sinais , Ativação Transcricional/fisiologia , Proteína 1 de Ligação a X-Box/metabolismo
18.
Blood Adv ; 4(12): 2821-2836, 2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32574366

RESUMO

Waldenström macroglobulinemia (WM) is a rare malignancy in which clonal B cells infiltrate the bone marrow and give rise to a smaller compartment of neoplastic plasma cells that secrete monoclonal immunoglobulin M paraprotein. Recent studies into underlying mutations in WM have enabled a much greater insight into the pathogenesis of this lymphoma. However, there is considerably less characterization of the way in which WM B cells differentiate and how they respond to immune stimuli. In this study, we assess WM B-cell differentiation using an established in vitro model system. Using T-cell-dependent conditions, we obtained CD138+ plasma cells from WM samples with a frequency similar to experiments performed with B cells from normal donors. Unexpectedly, a proportion of the WM B cells failed to upregulate CD38, a surface marker that is normally associated with plasmablast transition and maintained as the cells proceed with differentiation. In normal B cells, concomitant Toll-like receptor 7 (TLR7) activation and B-cell receptor cross-linking drives proliferation, followed by differentiation at similar efficiency to CD40-mediated stimulation. In contrast, we found that, upon stimulation with TLR7 agonist R848, WM B cells failed to execute the appropriate changes in transcriptional regulators, identifying an uncoupling of TLR signaling from the plasma cell differentiation program. Provision of CD40L was sufficient to overcome this defect. Thus, the limited clonotypic WM plasma cell differentiation observed in vivo may result from a strict requirement for integrated activation.


Assuntos
Linfoma de Células B , Macroglobulinemia de Waldenstrom , Linfócitos B , Diferenciação Celular , Humanos , Plasmócitos , Macroglobulinemia de Waldenstrom/genética
19.
Leukemia ; 34(5): 1329-1341, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31844144

RESUMO

Using a Burkitt lymphoma-like gene expression signature, we recently defined a high-risk molecular high-grade (MHG) group mainly within germinal centre B-cell like diffuse large B-cell lymphomas (GCB-DLBCL), which was enriched for MYC/BCL2 double-hit (MYC/BCL2-DH). The genetic basis underlying MHG-DLBCL and their aggressive clinical behaviour remain unknown. We investigated 697 cases of DLBCL, particularly those with MYC/BCL2-DH (n = 62) by targeted sequencing and gene expression profiling. We showed that DLBCL with MYC/BCL2-DH, and those with BCL2 translocation, harbour the characteristic mutation signatures that are associated with follicular lymphoma and its high-grade transformation. We identified frequent MYC hotspot mutations that affect the phosphorylation site (T58) and its adjacent amino acids, which are important for MYC protein degradation. These MYC mutations were seen in a subset of cases with MYC translocation, but predominantly in those of MHG. The mutations were more frequent in double-hit lymphomas with IG as the MYC translocation partner, and were associated with higher MYC protein expression and poor patient survival. DLBCL with MYC/BCL2-DH and those with BCL2 translocation alone are most likely derived from follicular lymphoma or its precursor lesion, and acquisition of MYC pathogenic mutations may augment MYC function, resulting in aggressive clinical behaviour.


Assuntos
Biomarcadores Tumorais/genética , Evolução Clonal , Linfoma Difuso de Grandes Células B/genética , Mutação , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-myc/genética , Feminino , Perfilação da Expressão Gênica , Regulação Leucêmica da Expressão Gênica , Rearranjo Gênico , Humanos , Linfoma Difuso de Grandes Células B/patologia , Masculino , Pessoa de Meia-Idade , Fenótipo , Prognóstico , Taxa de Sobrevida , Translocação Genética
20.
Plant J ; 56(5): 855-66, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18657236

RESUMO

The moss Physcomitrella patens is a model for the study of plant cell biology and, by virtue of its basal position in land plant phylogeny, for comparative analysis of the evolution of plant gene function and development. It is ideally suited for 'reverse genetic' analysis by virtue of its outstanding ability to undertake targeted transgene integration by homologous recombination. However, gene identification through mutagenesis and map-based cloning has hitherto not been possible, due to the lack of a genetic linkage map. Using molecular markers [amplified fragment length polymorphisms (AFLP) and simple sequence repeats (SSR)] we have generated genetic linkage maps for Physcomitrella. One hundred and seventy-nine gene-specific SSR markers were mapped in 46 linkage groups, and 1574 polymorphic AFLP markers were identified. Integrating the SSR- and AFLP-based maps generated 31 linkage groups comprising 1420 markers. Anchorage of the integrated linkage map with gene-specific SSR markers coupled with computational prediction of AFLP loci has enabled its correspondence with the newly sequenced Physcomitrella genome. The generation of a linkage map densely populated with molecular markers and anchored to the genome sequence now provides a resource for forward genetic interrogation of the organism and for the development of a pipeline for the map-based cloning of Physcomitrella genes. This will radically enhance the potential of Physcomitrella for determining how gene function has evolved for the acquisition of complex developmental strategies within the plant kingdom.


Assuntos
Bryopsida/genética , Mapeamento Cromossômico , Ligação Genética , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Sequência de Bases , DNA de Plantas/genética , Marcadores Genéticos , Genoma de Planta , Genótipo , Repetições de Microssatélites , Modelos Genéticos , Dados de Sequência Molecular
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa