Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.578
Filtrar
Mais filtros

Eixos temáticos
Intervalo de ano de publicação
1.
Annu Rev Immunol ; 34: 93-119, 2016 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-26735697

RESUMO

The dendritic cells (DCs) of the immune system function in innate and adaptive responses by directing activity of various effector cells rather than serving as effectors themselves. DCs and closely related myeloid lineages share expression of many surface receptors, presenting a challenge in distinguishing their unique in vivo functions. Recent work has taken advantage of unique transcriptional programs to identify and manipulate murine DCs in vivo. This work has assigned several nonredundant in vivo functions to distinct DC lineages, consisting of plasmacytoid DCs and several subsets of classical DCs that promote different immune effector modules in response to pathogens. In parallel, a correspondence between human and murine DC subsets has emerged, underlying structural similarities for the DC lineages between these species. Recent work has begun to unravel the transcriptional circuitry that controls the development and diversification of DCs from common progenitors in the bone marrow.


Assuntos
Células da Medula Óssea/fisiologia , Células Dendríticas/fisiologia , Regulação da Expressão Gênica , Imunidade Celular , Animais , Diferenciação Celular , Linhagem da Célula , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Imunidade Celular/genética , Camundongos , Ativação Transcricional
2.
Cell ; 184(16): 4137-4153.e14, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34256014

RESUMO

Diet modulates the gut microbiome, which in turn can impact the immune system. Here, we determined how two microbiota-targeted dietary interventions, plant-based fiber and fermented foods, influence the human microbiome and immune system in healthy adults. Using a 17-week randomized, prospective study (n = 18/arm) combined with -omics measurements of microbiome and host, including extensive immune profiling, we found diet-specific effects. The high-fiber diet increased microbiome-encoded glycan-degrading carbohydrate active enzymes (CAZymes) despite stable microbial community diversity. Although cytokine response score (primary outcome) was unchanged, three distinct immunological trajectories in high-fiber consumers corresponded to baseline microbiota diversity. Alternatively, the high-fermented-food diet steadily increased microbiota diversity and decreased inflammatory markers. The data highlight how coupling dietary interventions to deep and longitudinal immune and microbiome profiling can provide individualized and population-wide insight. Fermented foods may be valuable in countering the decreased microbiome diversity and increased inflammation pervasive in industrialized society.


Assuntos
Dieta , Microbioma Gastrointestinal , Imunidade , Biodiversidade , Fibras na Dieta/farmacologia , Comportamento Alimentar , Feminino , Alimentos Fermentados , Microbioma Gastrointestinal/efeitos dos fármacos , Humanos , Inflamação/patologia , Masculino , Pessoa de Meia-Idade , Transdução de Sinais/efeitos dos fármacos
3.
Nat Immunol ; 20(9): 1174-1185, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31406377

RESUMO

Classical type 1 dendritic cells (cDC1s) are required for antiviral and antitumor immunity, which necessitates an understanding of their development. Development of the cDC1 progenitor requires an E-protein-dependent enhancer located 41 kilobases downstream of the transcription start site of the transcription factor Irf8 (+41-kb Irf8 enhancer), but its maturation instead requires the Batf3-dependent +32-kb Irf8 enhancer. To understand this switch, we performed single-cell RNA sequencing of the common dendritic cell progenitor (CDP) and identified a cluster of cells that expressed transcription factors that influence cDC1 development, such as Nfil3, Id2 and Zeb2. Genetic epistasis among these factors revealed that Nfil3 expression is required for the transition from Zeb2hi and Id2lo CDPs to Zeb2lo and Id2hi CDPs, which represent the earliest committed cDC1 progenitors. This genetic circuit blocks E-protein activity to exclude plasmacytoid dendritic cell potential and explains the switch in Irf8 enhancer usage during cDC1 development.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Células Dendríticas/citologia , Elementos Facilitadores Genéticos/genética , Proteína 2 Inibidora de Diferenciação/metabolismo , Fatores Reguladores de Interferon/metabolismo , Homeobox 2 de Ligação a E-box com Dedos de Zinco/metabolismo , Animais , Diferenciação Celular/imunologia , Células Cultivadas , Regulação da Expressão Gênica no Desenvolvimento/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Repressoras/metabolismo , Células-Tronco/citologia
4.
Nat Immunol ; 20(9): 1161-1173, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31406378

RESUMO

Induction of the transcription factor Irf8 in the common dendritic cell progenitor (CDP) is required for classical type 1 dendritic cell (cDC1) fate specification, but the mechanisms controlling this induction are unclear. In the present study Irf8 enhancers were identified via chromatin profiling of dendritic cells and CRISPR/Cas9 genome editing was used to assess their roles in Irf8 regulation. An enhancer 32 kilobases (kb) downstream of the Irf8 transcriptional start site (+32-kb Irf8) that was active in mature cDC1s was required for the development of this lineage, but not for its specification. Instead, a +41-kb Irf8 enhancer, previously thought to be active only in plasmacytoid dendritic cells, was found to also be transiently accessible in cDC1 progenitors, and deleting this enhancer prevented the induction of Irf8 in CDPs and abolished cDC1 specification. Thus, cryptic activation of the +41-kb Irf8 enhancer in dendritic cell progenitors is responsible for cDC1 fate specification.


Assuntos
Células Dendríticas/citologia , Elementos Facilitadores Genéticos/genética , Fatores Reguladores de Interferon/metabolismo , Macrófagos/citologia , Monócitos/citologia , Animais , Sistemas CRISPR-Cas/genética , Diferenciação Celular , Linhagem da Célula , Células Dendríticas/imunologia , Regulação da Expressão Gênica , Fatores Reguladores de Interferon/genética , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/metabolismo , Células-Tronco/citologia , Células Tumorais Cultivadas
5.
Immunity ; 55(6): 1032-1050.e14, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35704993

RESUMO

Conventional dendritic cells (cDCs), cDC1 and cDC2, act both to initiate immunity and maintain self-tolerance. The tryptophan metabolic enzyme indoleamine 2,3-dioxygenase 1 (IDO1) is used by cDCs in maintaining tolerance, but its role in different subsets remains unclear. At homeostasis, only mature CCR7+ cDC1 expressed IDO1 that was dependent on IRF8. Lipopolysaccharide treatment induced maturation and IDO1-dependent tolerogenic activity in isolated immature cDC1, but not isolated cDC2. However, both human and mouse cDC2 could induce IDO1 and acquire tolerogenic function when co-cultured with mature cDC1 through the action of cDC1-derived l-kynurenine. Accordingly, cDC1-specific inactivation of IDO1 in vivo exacerbated disease in experimental autoimmune encephalomyelitis. This study identifies a previously unrecognized metabolic communication in which IDO1-expressing cDC1 cells extend their immunoregulatory capacity to the cDC2 subset through their production of tryptophan metabolite l-kynurenine. This metabolic axis represents a potential therapeutic target in treating autoimmune demyelinating diseases.


Assuntos
Indolamina-Pirrol 2,3,-Dioxigenase , Cinurenina , Animais , Células Dendríticas , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Cinurenina/metabolismo , Camundongos , Transdução de Sinais , Triptofano/metabolismo
6.
Nat Immunol ; 18(5): 563-572, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28346410

RESUMO

Variable strengths of signaling via the T cell antigen receptor (TCR) can produce divergent outcomes, but the mechanism of this remains obscure. The abundance of the transcription factor IRF4 increases with TCR signal strength, but how this would induce distinct types of responses is unclear. We compared the expression of genes in the TH2 subset of helper T cells to enhancer occupancy by the BATF-IRF4 transcription factor complex at varying strengths of TCR stimulation. Genes dependent on BATF-IRF4 clustered into groups with distinct TCR sensitivities. Enhancers exhibited a spectrum of occupancy by the BATF-IRF4 ternary complex that correlated with the sensitivity of gene expression to TCR signal strength. DNA sequences immediately flanking the previously defined AICE motif controlled the affinity of BATF-IRF4 for direct binding to DNA. Analysis by the chromatin immunoprecipitation-exonuclease (ChIP-exo) method allowed the identification of a previously unknown high-affinity AICE2 motif at a human single-nucleotide polymorphism (SNP) of the gene encoding the immunomodulatory receptor CTLA-4 that was associated with resistance to autoimmunity. Thus, the affinity of different enhancers for the BATF-IRF4 complex might underlie divergent signaling outcomes in response to various strengths of TCR signaling.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Antígeno CTLA-4/genética , Elementos Facilitadores Genéticos/genética , Fatores Reguladores de Interferon/metabolismo , Complexos Multiproteicos/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Células Th2/fisiologia , Animais , Autoimunidade/genética , Fatores de Transcrição de Zíper de Leucina Básica/genética , Predisposição Genética para Doença , Humanos , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos BALB C , Camundongos Knockout , Polimorfismo de Nucleotídeo Único , Ligação Proteica/genética , Transdução de Sinais/genética
7.
Cell ; 156(6): 1223-1234, 2014 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-24630724

RESUMO

Splenic red pulp macrophages (RPM) degrade senescent erythrocytes and recycle heme-associated iron. The transcription factor SPI-C is selectively expressed by RPM and is required for their development, but the physiologic stimulus inducing Spic is unknown. Here, we report that Spic also regulated the development of F4/80(+)VCAM1(+) bone marrow macrophages (BMM) and that Spic expression in BMM and RPM development was induced by heme, a metabolite of erythrocyte degradation. Pathologic hemolysis induced loss of RPM and BMM due to excess heme but induced Spic in monocytes to generate new RPM and BMM. Spic expression in monocytes was constitutively inhibited by the transcriptional repressor BACH1. Heme induced proteasome-dependent BACH1 degradation and rapid Spic derepression. Furthermore, cysteine-proline dipeptide motifs in BACH1 that mediate heme-dependent degradation were necessary for Spic induction by heme. These findings are the first example of metabolite-driven differentiation of a tissue-resident macrophage subset and provide new insights into iron homeostasis.


Assuntos
Diferenciação Celular , Proteínas de Ligação a DNA/metabolismo , Heme/metabolismo , Ferro/metabolismo , Monócitos/metabolismo , Animais , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Proteínas de Ligação a DNA/genética , Feminino , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Células Mieloides/metabolismo , Baço/citologia , Baço/metabolismo
8.
Nature ; 618(7966): 842-848, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37258671

RESUMO

Nonsense mutations are the underlying cause of approximately 11% of all inherited genetic diseases1. Nonsense mutations convert a sense codon that is decoded by tRNA into a premature termination codon (PTC), resulting in an abrupt termination of translation. One strategy to suppress nonsense mutations is to use natural tRNAs with altered anticodons to base-pair to the newly emerged PTC and promote translation2-7. However, tRNA-based gene therapy has not yielded an optimal combination of clinical efficacy and safety and there is presently no treatment for individuals with nonsense mutations. Here we introduce a strategy based on altering native tRNAs into  efficient suppressor tRNAs (sup-tRNAs) by individually fine-tuning their sequence to the physico-chemical properties of the amino acid that they carry. Intravenous and intratracheal lipid nanoparticle (LNP) administration of sup-tRNA in mice restored the production of functional proteins with nonsense mutations. LNP-sup-tRNA formulations caused no discernible readthrough at endogenous native stop codons, as determined by ribosome profiling. At clinically important PTCs in the cystic fibrosis transmembrane conductance regulator gene (CFTR), the sup-tRNAs re-established expression and function in cell systems and patient-derived nasal epithelia and restored airway volume homeostasis. These results provide a framework for the development of tRNA-based therapies with a high molecular safety profile and high efficacy in targeted PTC suppression.


Assuntos
Códon sem Sentido , Regulador de Condutância Transmembrana em Fibrose Cística , RNA de Transferência , Animais , Camundongos , Aminoácidos/genética , Códon sem Sentido/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , RNA de Transferência/administração & dosagem , RNA de Transferência/genética , RNA de Transferência/uso terapêutico , Pareamento de Bases , Anticódon/genética , Biossíntese de Proteínas , Mucosa Nasal/metabolismo , Perfil de Ribossomos
9.
Nature ; 606(7912): 129-136, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35589843

RESUMO

One of the most striking features of human cognition is the ability to plan. Two aspects of human planning stand out-its efficiency and flexibility. Efficiency is especially impressive because plans must often be made in complex environments, and yet people successfully plan solutions to many everyday problems despite having limited cognitive resources1-3. Standard accounts in psychology, economics and artificial intelligence have suggested that human planning succeeds because people have a complete representation of a task and then use heuristics to plan future actions in that representation4-11. However, this approach generally assumes that task representations are fixed. Here we propose that task representations can be controlled and that such control provides opportunities to quickly simplify problems and more easily reason about them. We propose a computational account of this simplification process and, in a series of preregistered behavioural experiments, show that it is subject to online cognitive control12-14 and that people optimally balance the complexity of a task representation and its utility for planning and acting. These results demonstrate how strategically perceiving and conceiving problems facilitates the effective use of limited cognitive resources.


Assuntos
Cognição , Função Executiva , Eficiência , Heurística , Humanos , Modelos Psicológicos
10.
Nat Immunol ; 16(7): 708-17, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26054719

RESUMO

The transcription factors Batf3 and IRF8 are required for the development of CD8α(+) conventional dendritic cells (cDCs), but the basis for their actions has remained unclear. Here we identified two progenitor cells positive for the transcription factor Zbtb46 that separately generated CD8α(+) cDCs and CD4(+) cDCs and arose directly from the common DC progenitor (CDP). Irf8 expression in CDPs required prior autoactivation of Irf8 that was dependent on the transcription factor PU.1. Specification of the clonogenic progenitor of CD8α(+) cDCs (the pre-CD8 DC) required IRF8 but not Batf3. However, after specification of pre-CD8 DCs, autoactivation of Irf8 became Batf3 dependent at a CD8α(+) cDC-specific enhancer with multiple transcription factor AP1-IRF composite elements (AICEs) within the Irf8 superenhancer. CDPs from Batf3(-/-) mice that were specified toward development into pre-CD8 DCs failed to complete their development into CD8α(+) cDCs due to decay of Irf8 autoactivation and diverted to the CD4(+) cDC lineage.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/imunologia , Células Dendríticas/imunologia , Fatores Reguladores de Interferon/imunologia , Proteínas Repressoras/imunologia , Células-Tronco/imunologia , Animais , Sequência de Bases , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Células da Medula Óssea/imunologia , Células da Medula Óssea/metabolismo , Antígeno CD24/imunologia , Antígeno CD24/metabolismo , Antígenos CD8/imunologia , Antígenos CD8/metabolismo , Células Cultivadas , Células Clonais/imunologia , Células Clonais/metabolismo , Células Dendríticas/metabolismo , Citometria de Fluxo , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/metabolismo , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Dados de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Ligação Proteica , Receptores Imunológicos/imunologia , Receptores Imunológicos/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Homologia de Sequência do Ácido Nucleico , Células-Tronco/metabolismo , Transcriptoma/genética , Transcriptoma/imunologia
11.
PLoS Pathog ; 20(5): e1012269, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38814984

RESUMO

Toxoplasma gondii is a foodborne pathogen that can cause severe and life-threatening infections in fetuses and immunocompromised patients. Felids are its only definitive hosts, and a wide range of animals, including humans, serve as intermediate hosts. When the transmissible bradyzoite stage is orally ingested by felids, they transform into merozoites that expand asexually, ultimately generating millions of gametes for the parasite sexual cycle. However, bradyzoites in intermediate hosts differentiate exclusively to disease-causing tachyzoites, which rapidly disseminate throughout the host. Though tachyzoites are well-studied, the molecular mechanisms governing transitioning between developmental stages are poorly understood. Each parasite stage can be distinguished by a characteristic transcriptional signature, with one signature being repressed during the other stages. Switching between stages require substantial changes in the proteome, which is achieved in part by ubiquitination. F-box proteins mediate protein poly-ubiquitination by recruiting substrates to SKP1, Cullin-1, F-Box protein E3 ubiquitin ligase (SCF-E3) complexes. We have identified an F-box protein named Toxoplasma gondii F-Box Protein L2 (TgFBXL2), which localizes to distinct perinucleolar sites. TgFBXL2 is stably engaged in an SCF-E3 complex that is surprisingly also associated with a COP9 signalosome complex that negatively regulates SCF-E3 function. At the cellular level, TgFBXL2-depleted parasites are severely defective in centrosome replication and daughter cell development. Most remarkable, RNAseq data show that TgFBXL2 conditional depletion induces the expression of stage-specific genes including a large cohort of genes necessary for sexual commitment. Together, these data suggest that TgFBXL2 is a latent guardian of stage specific gene expression in Toxoplasma and poised to remove conflicting proteins in response to an unknown trigger of development.


Assuntos
Proteínas de Protozoários , Toxoplasma , Toxoplasma/genética , Toxoplasma/metabolismo , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/genética , Animais , Humanos , Proteínas F-Box/metabolismo , Proteínas F-Box/genética , Toxoplasmose/parasitologia , Toxoplasmose/metabolismo , Toxoplasmose/genética , Estágios do Ciclo de Vida
12.
Nature ; 584(7822): 624-629, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32788723

RESUMO

Conventional type 1 dendritic cells (cDC1)1 are thought to perform antigen cross-presentation, which is required to prime CD8+ T cells2,3, whereas cDC2 are specialized for priming CD4+ T cells4,5. CD4+ T cells are also considered to help CD8+ T cell responses through a variety of mechanisms6-11, including a process whereby CD4+ T cells 'license' cDC1 for CD8+ T cell priming12. However, this model has not been directly tested in vivo or in the setting of help-dependent tumour rejection. Here we generated an Xcr1Cre mouse strain to evaluate the cellular interactions that mediate tumour rejection in a model requiring CD4+ and CD8+ T cells. As expected, tumour rejection required cDC1 and CD8+ T cell priming required the expression of major histocompatibility class I molecules by cDC1. Unexpectedly, early priming of CD4+ T cells against tumour-derived antigens also required cDC1, and this was not simply because they transport antigens to lymph nodes for processing by cDC2, as selective deletion of major histocompatibility class II molecules in cDC1 also prevented early CD4+ T cell priming. Furthermore, deletion of either major histocompatibility class II or CD40 in cDC1 impaired tumour rejection, consistent with a role for cognate CD4+ T cell interactions and CD40 signalling in cDC1 licensing. Finally, CD40 signalling in cDC1 was critical not only for CD8+ T cell priming, but also for initial CD4+ T cell activation. Thus, in the setting of tumour-derived antigens, cDC1 function as an autonomous platform capable of antigen processing and priming for both CD4+ and CD8+ T cells and of the direct orchestration of their cross-talk that is required for optimal anti-tumour immunity.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Apresentação Cruzada , Células Dendríticas/imunologia , Neoplasias/imunologia , Animais , Apresentação de Antígeno/imunologia , Linfócitos T CD4-Positivos/citologia , Antígenos CD40/imunologia , Antígenos CD40/metabolismo , Linfócitos T CD8-Positivos/imunologia , Células Dendríticas/citologia , Células Dendríticas/metabolismo , Feminino , Antígenos de Histocompatibilidade Classe II/imunologia , Camundongos , Transdução de Sinais
13.
Proc Natl Acad Sci U S A ; 120(35): e2220853120, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37607223

RESUMO

Ly6Clo monocytes are a myeloid subset that specializes in the surveillance of vascular endothelium. Ly6Clo monocytes have been shown to derive from Ly6Chi monocytes. NOTCH2 signaling has been implicated as a trigger for Ly6Clo monocyte development, but the basis for this effect is unclear. Here, we examined the impact of NOTCH2 signaling of myeloid progenitors on the development of Ly6Clo monocytes in vitro. NOTCH2 signaling induced by delta-like ligand 1 (DLL1) efficiently induced the transition of Ly6Chi TREML4- monocytes into Ly6Clo TREML4+ monocytes. We further identified two additional transcriptional requirements for development of Ly6Clo monocytes. Deletion of BCL6 from myeloid progenitors abrogated development of Ly6Clo monocytes. IRF2 was also required for Ly6Clo monocyte development in a cell-intrinsic manner. DLL1-induced in vitro transition into Ly6Clo TREML4+ monocytes required IRF2 but unexpectedly could occur in the absence of NUR77 or BCL6. These results imply a transcriptional hierarchy for these factors in controlling Ly6Clo monocyte development.


Assuntos
Endotélio Vascular , Monócitos , Hematopoese , Transdução de Sinais
14.
PLoS Genet ; 19(2): e1010666, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36809245

RESUMO

Chromosome movements and licensing of synapsis must be tightly regulated during early meiosis to ensure accurate chromosome segregation and avoid aneuploidy, although how these steps are coordinated is not fully understood. Here we show that GRAS-1, the worm homolog of mammalian GRASP/Tamalin and CYTIP, coordinates early meiotic events with cytoskeletal forces outside the nucleus. GRAS-1 localizes close to the nuclear envelope (NE) in early prophase I and interacts with NE and cytoskeleton proteins. Delayed homologous chromosome pairing, synaptonemal complex (SC) assembly, and DNA double-strand break repair progression are partially rescued by the expression of human CYTIP in gras-1 mutants, supporting functional conservation. However, Tamalin, Cytip double knockout mice do not exhibit obvious fertility or meiotic defects, suggesting evolutionary differences between mammals. gras-1 mutants show accelerated chromosome movement during early prophase I, implicating GRAS-1 in regulating chromosome dynamics. GRAS-1-mediated regulation of chromosome movement is DHC-1-dependent, placing it acting within the LINC-controlled pathway, and depends on GRAS-1 phosphorylation at a C-terminal S/T cluster. We propose that GRAS-1 coordinates the early steps of homology search and licensing of SC assembly by regulating the pace of chromosome movement in early prophase I.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Humanos , Camundongos , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Pareamento Cromossômico , Segregação de Cromossomos , Mamíferos/genética , Meiose , Prófase Meiótica I , Complexo Sinaptonêmico/metabolismo
15.
J Biol Chem ; 300(6): 107393, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38777143

RESUMO

Protein tyrosine phosphatase nonreceptor type 22 (PTPN22) is encoded by a major autoimmunity gene and is a known inhibitor of T cell receptor (TCR) signaling and drug target for cancer immunotherapy. However, little is known about PTPN22 posttranslational regulation. Here, we characterize a phosphorylation site at Ser325 situated C terminal to the catalytic domain of PTPN22 and its roles in altering protein function. In human T cells, Ser325 is phosphorylated by glycogen synthase kinase-3 (GSK3) following TCR stimulation, which promotes its TCR-inhibitory activity. Signaling through the major TCR-dependent pathway under PTPN22 control was enhanced by CRISPR/Cas9-mediated suppression of Ser325 phosphorylation and inhibited by mimicking it via glutamic acid substitution. Global phospho-mass spectrometry showed Ser325 phosphorylation state alters downstream transcriptional activity through enrichment of Swi3p, Rsc8p, and Moira domain binding proteins, and next-generation sequencing revealed it differentially regulates the expression of chemokines and T cell activation pathways. Moreover, in vitro kinetic data suggest the modulation of activity depends on a cellular context. Finally, we begin to address the structural and mechanistic basis for the influence of Ser325 phosphorylation on the protein's properties by deuterium exchange mass spectrometry and NMR spectroscopy. In conclusion, this study explores the function of a novel phosphorylation site of PTPN22 that is involved in complex regulation of TCR signaling and provides details that might inform the future development of allosteric modulators of PTPN22.


Assuntos
Proteína Tirosina Fosfatase não Receptora Tipo 22 , Receptores de Antígenos de Linfócitos T , Transdução de Sinais , Humanos , Fosforilação , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos de Linfócitos T/imunologia , Proteína Tirosina Fosfatase não Receptora Tipo 22/genética , Proteína Tirosina Fosfatase não Receptora Tipo 22/metabolismo , Mutação com Ganho de Função , Linfócitos T/metabolismo , Linfócitos T/imunologia , Células Jurkat , Células HEK293
16.
Nat Immunol ; 14(9): 937-48, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23913046

RESUMO

Defense against attaching-and-effacing bacteria requires the sequential generation of interleukin 23 (IL-23) and IL-22 to induce protective mucosal responses. Although CD4(+) and NKp46(+) innate lymphoid cells (ILCs) are the critical source of IL-22 during infection, the precise source of IL-23 is unclear. We used genetic techniques to deplete mice of specific subsets of classical dendritic cells (cDCs) and analyzed immunity to the attaching-and-effacing pathogen Citrobacter rodentium. We found that the signaling receptor Notch2 controlled the terminal stage of cDC differentiation. Notch2-dependent intestinal CD11b(+) cDCs were an obligate source of IL-23 required for survival after infection with C. rodentium, but CD103(+) cDCs dependent on the transcription factor Batf3 were not. Our results demonstrate a nonredundant function for CD11b(+) cDCs in the response to pathogens in vivo.


Assuntos
Citrobacter rodentium/imunologia , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Receptor Notch2/metabolismo , Animais , Antígenos CD/metabolismo , Antígeno CD11b/metabolismo , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Células Dendríticas/citologia , Infecções por Enterobacteriaceae/imunologia , Infecções por Enterobacteriaceae/microbiologia , Infecções por Enterobacteriaceae/mortalidade , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Interleucina-23/metabolismo , Mucosa Intestinal/microbiologia , Lectinas Tipo C/metabolismo , Receptor beta de Linfotoxina/genética , Receptor beta de Linfotoxina/metabolismo , Camundongos , Camundongos Transgênicos , Antígenos de Histocompatibilidade Menor , Receptor Notch2/deficiência , Receptores de Superfície Celular/metabolismo , Transdução de Sinais , Baço/imunologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Cicatrização/genética , Cicatrização/imunologia
17.
Brain ; 147(8): 2761-2774, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38651838

RESUMO

SCN2A-related disorders secondary to altered function in the voltage-gated sodium channel Nav1.2 are rare, with clinically heterogeneous expressions that include epilepsy, autism and multiple severe to profound impairments and other conditions. To advance understanding of the clinical phenotypes and their relationship to channel function, 81 patients (36 female, 44%, median age 5.4 years) with 69 unique SCN2A variants were systematically phenotyped and their Nav1.2 channel function systematically assessed. Participants were recruited through the FamileSCN2A Foundation. Primary phenotype (epilepsy of neonatal onset, n = 27; infant onset, n = 18; and later onset n = 24; and autism without seizures, n = 12) was strongly correlated with a non-seizure severity index (P = 0.002), which was based on presence of severe impairments in gross motor, fine motor, communication abilities, gastrostomy tube dependence and diagnosis of cortical visual impairment and scoliosis. Non-seizure severity was greatest in the neonatal-onset group and least in the autism group (P = 0.002). Children with the lowest severity indices were still severely impaired, as reflected by an average Vineland Adaptive Behavior composite score of 49.5 (>3 standard deviations below the norm-referenced mean of the test). Epileptic spasms were significantly more common in infant-onset (67%) than in neonatal (22%) or later-onset (29%) epilepsy (P = 0.007). Primary phenotype was also strongly correlated with variant function (P < 0.0001); gain-of-function and mixed function variants predominated in neonatal-onset epilepsy, shifting to moderate loss of function in infant-onset epilepsy and to severe and complete loss of function in later-onset epilepsy and autism groups. Exploratory cluster analysis identified five groups, representing: (i) primarily later-onset epilepsy with moderate loss-of-function variants and low severity indices; (ii) mostly infant-onset epilepsy with moderate loss-of-function variants but higher severity indices; and (iii) late-onset and autism only, with the lowest severity indices (mostly zero) and severe/complete loss-of-function variants. Two exclusively neonatal clusters were distinguished from each other largely on non-seizure severity scores and secondarily on variant function. The relationship between primary phenotype and variant function emphasizes the role of developmental factors in the differential clinical expression of SCN2A variants based on their effects on Nav1.2 channel function. The non-seizure severity of SCN2A disorders depends on a combination of the age at seizure onset (primary phenotype) and variant function. As precision therapies for SCN2A-related disorders advance towards clinical trials, knowledge of the relationship between variant function and clinical disease expression will be valuable for identifying appropriate patients for these trials and in selecting efficient clinical outcomes.


Assuntos
Epilepsia , Canal de Sódio Disparado por Voltagem NAV1.2 , Fenótipo , Humanos , Canal de Sódio Disparado por Voltagem NAV1.2/genética , Feminino , Masculino , Pré-Escolar , Criança , Lactente , Adolescente , Epilepsia/genética , Adulto , Adulto Jovem , Mutação , Transtorno Autístico/genética , Índice de Gravidade de Doença
18.
Mol Cell ; 66(3): 358-372.e7, 2017 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-28475871

RESUMO

A decline in proteasome function is causally connected to neuronal aging and aging-associated neuropathologies. By using hippocampal neurons in culture and in vivo, we show that aging triggers a reduction and a cytoplasm-to-nucleus redistribution of the E3 ubiquitin ligase mahogunin (MGRN1). Proteasome impairment induces MGRN1 monoubiquitination, the key post-translational modification for its nuclear entry. One potential mechanism for MGRN1 monoubiquitination is via progressive deubiquitination at the proteasome of polyubiquitinated MGRN1. Once in the nucleus, MGRN1 potentiates the transcriptional cellular response to proteotoxic stress. Inhibition of MGRN1 impairs ATF3-mediated neuronal responsiveness to proteosomal stress and increases neuronal stress, while increasing MGRN1 ameliorates signs of neuronal aging, including cognitive performance in old animals. Our results imply that, among others, the strength of neuronal survival in a proteasomal deterioration background, like during aging, depends on the fine-tuning of ubiquitination-deubiquitination.


Assuntos
Envelhecimento/metabolismo , Núcleo Celular/enzimologia , Citoplasma/enzimologia , Hipocampo/enzimologia , Neurônios/enzimologia , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina/metabolismo , Ubiquitinação , Fator 3 Ativador da Transcrição/genética , Fator 3 Ativador da Transcrição/metabolismo , Transporte Ativo do Núcleo Celular , Envelhecimento/genética , Envelhecimento/patologia , Animais , Comportamento Animal , Núcleo Celular/ultraestrutura , Sobrevivência Celular , Cromatina/enzimologia , Cognição , Células HEK293 , Hipocampo/ultraestrutura , Humanos , Aprendizagem em Labirinto , Camundongos Endogâmicos C57BL , Neurônios/ultraestrutura , Complexo de Endopeptidases do Proteassoma/metabolismo , Interferência de RNA , Ratos Wistar , Transdução de Sinais , Estresse Fisiológico , Transcrição Gênica , Transfecção , Ubiquitina-Proteína Ligases/genética
19.
Proc Natl Acad Sci U S A ; 119(42): e2202871119, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36215506

RESUMO

COVID-19 is the latest zoonotic RNA virus epidemic of concern. Learning how it began and spread will help to determine how to reduce the risk of future events. We review major RNA virus outbreaks since 1967 to identify common features and opportunities to prevent emergence, including ancestral viral origins in birds, bats, and other mammals; animal reservoirs and intermediate hosts; and pathways for zoonotic spillover and community spread, leading to local, regional, or international outbreaks. The increasing scientific evidence concerning the origins of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is most consistent with a zoonotic origin and a spillover pathway from wildlife to people via wildlife farming and the wildlife trade. We apply what we know about these outbreaks to identify relevant, feasible, and implementable interventions. We identify three primary targets for pandemic prevention and preparedness: first, smart surveillance coupled with epidemiological risk assessment across wildlife-livestock-human (One Health) spillover interfaces; second, research to enhance pandemic preparedness and expedite development of vaccines and therapeutics; and third, strategies to reduce underlying drivers of spillover risk and spread and reduce the influence of misinformation. For all three, continued efforts to improve and integrate biosafety and biosecurity with the implementation of a One Health approach are essential. We discuss new models to address the challenges of creating an inclusive and effective governance structure, with the necessary stable funding for cross-disciplinary collaborative research. Finally, we offer recommendations for feasible actions to close the knowledge gaps across the One Health continuum and improve preparedness and response in the future.


Assuntos
COVID-19 , Quirópteros , Saúde Única , Animais , Animais Selvagens , COVID-19/epidemiologia , COVID-19/prevenção & controle , Humanos , Pandemias/prevenção & controle , SARS-CoV-2 , Zoonoses/epidemiologia , Zoonoses/prevenção & controle
20.
Chem Soc Rev ; 53(17): 8563-8631, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-38912871

RESUMO

Ionic liquids (ILs) and deep eutectic solvents (DESs) have tremendous potential for reactive capture and conversion (RCC) of CO2 due to their wide electrochemical stability window, low volatility, and high CO2 solubility. There is environmental and economic interest in the direct utilization of the captured CO2 using electrified and modular processes that forgo the thermal- or pressure-swing regeneration steps to concentrate CO2, eliminating the need to compress, transport, or store the gas. The conventional electrochemical conversion of CO2 with aqueous electrolytes presents limited CO2 solubility and high energy requirement to achieve industrially relevant products. Additionally, aqueous systems have competitive hydrogen evolution. In the past decade, there has been significant progress toward the design of ILs and DESs, and their composites to separate CO2 from dilute streams. In parallel, but not necessarily in synergy, there have been studies focused on a few select ILs and DESs for electrochemical reduction of CO2, often diluting them with aqueous or non-aqueous solvents. The resulting electrode-electrolyte interfaces present a complex speciation for RCC. In this review, we describe how the ILs and DESs are tuned for RCC and specifically address the CO2 chemisorption and electroreduction mechanisms. Critical bulk and interfacial properties of ILs and DESs are discussed in the context of RCC, and the potential of these electrolytes are presented through a techno-economic evaluation.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa