Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Planta Med ; 89(3): 236-244, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36170859

RESUMO

Oxidative stress (OS) is involved in the development of diabetes mellitus (DM) and its complications. Thus, OS reduction may be an important strategy for DM therapy. Propolis is bee resins with high antioxidant activity and is used in the treatment of different diseases, including DM. Therefore, in this systematic review, we evaluated the impact of propolis administration in diabetic animals. We used the PRISMA strategy to collect preclinical studies published in English up to November 2021 in three databases (PubMed/Medline, Scopus, and Web of Science). We used the SYRCLE tool to analyze the risk of methodological bias. Our primary search returned 198 studies, of which 14 were considered eligible to be included in this review. The administration of propolis induced a hypoglycemic effect in the treated animals, which is probably due to the reduction of OS. The animals showed restoration of endogenous antioxidant defenses and reduced levels of markers for OS. The administration of propolis resulted in improvement in the lipid profile of treated animals. Our risk of bias assessment showed a methodological quality score of less than 30% due to a lack of randomization, blinding, and proper allocation of animals. Heterogeneity in treatments, lack of results, and use of non-standard extracts are limitations in our data analysis. Despite these limitations, propolis induced a significant hypoglycemic effect in diabetic animals when compared to untreated controls. This effect was associated with a reduction in OS, a process mediated by ROS neutralization and restoration of endogenous antioxidant defenses.


Assuntos
Diabetes Mellitus Experimental , Própole , Animais , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Própole/farmacologia , Própole/uso terapêutico , Estresse Oxidativo , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/tratamento farmacológico , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico
2.
Nutrients ; 16(11)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38892513

RESUMO

BACKGROUND: Biochemical events provoked by oxidative stress and advanced glycation may be inhibited by combining natural bioactives with classic therapeutic agents, which arise as strategies to mitigate diabetic complications. The aim of this study was to investigate whether lycopene combined with a reduced insulin dose is able to control glycemia and to oppose glycoxidative stress in kidneys of diabetic rats. METHODS: Streptozotocin-induced diabetic rats were treated with 45 mg/kg lycopene + 1 U/day insulin for 30 days. The study assessed glycemia, insulin sensitivity, lipid profile and paraoxonase 1 (PON-1) activity in plasma. Superoxide dismutase (SOD) and catalase (CAT) activities and the protein levels of advanced glycation end-product receptor 1 (AGE-R1) and glyoxalase-1 (GLO-1) in the kidneys were also investigated. RESULTS: An effective glycemic control was achieved with lycopene plus insulin, which may be attributed to improvements in insulin sensitivity. The combined therapy decreased the dyslipidemia and increased the PON-1 activity. In the kidneys, lycopene plus insulin increased the activities of SOD and CAT and the levels of AGE-R1 and GLO-1, which may be contributing to the antialbuminuric effect. CONCLUSIONS: These findings demonstrate that lycopene may aggregate favorable effects to insulin against diabetic complications resulting from glycoxidative stress.


Assuntos
Antioxidantes , Diabetes Mellitus Experimental , Produtos Finais de Glicação Avançada , Insulina , Rim , Licopeno , Estresse Oxidativo , Ratos Wistar , Animais , Licopeno/farmacologia , Rim/efeitos dos fármacos , Rim/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , Antioxidantes/farmacologia , Masculino , Insulina/sangue , Insulina/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos , Glicemia/metabolismo , Glicemia/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Catalase/metabolismo , Arildialquilfosfatase/metabolismo , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Resistência à Insulina , Lactoilglutationa Liase/metabolismo , Quimioterapia Combinada , Hipoglicemiantes/farmacologia , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/metabolismo
3.
Pharmaceutics ; 16(5)2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38794296

RESUMO

Liraglutide (LIRA) is a glucagon-like peptide-1 (GLP-1) receptor agonist renowned for its efficacy in treating type 2 diabetes mellitus (T2DM) and is typically administered via subcutaneous injections. Oral delivery, although more desirable for being painless and potentially enhancing patient adherence, is challenged by the peptide's low bioavailability and vulnerability to digestive enzymes. This study aimed to develop LIRA-containing zein-based nanoparticles stabilized with eudragit RS100 and chitosan for oral use (Z-ERS-CS/LIRA). These nanoparticles demonstrated a spherical shape, with a mean diameter of 238.6 nm, a polydispersity index of 0.099, a zeta potential of +40.9 mV, and an encapsulation efficiency of 41%. In vitro release studies indicated a prolonged release, with up to 61% of LIRA released over 24 h. Notably, the nanoparticles showed considerable resistance and stability in simulated gastric and intestinal fluids, suggesting protection from pH and enzymatic degradation. Pharmacokinetic analysis revealed that orally administered Z-ERS-CS/LIRA paralleled the pharmacokinetic profile seen with subcutaneously delivered LIRA. Furthermore, in vivo tests on a diabetic rat model showed that Z-ERS-CS/LIRA significantly controlled glucose levels, comparable to the results observed with free LIRA. The findings underscore Z-ERS-CS/LIRA nanoparticles as a promising approach for oral LIRA delivery in T2DM management.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa