Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38917338

RESUMO

Herein, we introduce a photobiocidal surface activated by white light. The photobiocidal surface was produced through thermocompressing a mixture of titanium dioxide (TiO2), ultra-high-molecular-weight polyethylene (UHMWPE), and reduced graphene oxide (rGO) powders. A photobiocidal activity was not observed on UHMWPE-TiO2. However, UHMWPE-TiO2@rGO exhibited potent photobiocidal activity (>3-log reduction) against Staphylococcus epidermidis and Escherichia coli bacteria after a 12 h exposure to white light. The activity was even more potent against the phage phi 6 virus, a SARS-CoV-2 surrogate, with a >5-log reduction after 6 h exposure to white light. Our mechanistic studies showed that the UHMWPE-TiO2@rGO was activated only by UV light, which accounts for 0.31% of the light emitted by the white LED lamp, producing reactive oxygen species that are lethal to microbes. This indicates that adding rGO to UHMWPE-TiO2 triggered intense photobiocidal activity even at shallow UV flux levels.

2.
Langmuir ; 39(22): 7731-7740, 2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37216613

RESUMO

Robust fluorine-free superhydrophobic films were produced from a mixture of two fatty acids (stearic acid and palmitic acid), SiO2 nanoparticles, and polydimethylsiloxane. These simple and nontoxic compounds were deposited via aerosol-assisted chemical vapor deposition to provide the rough topography required for superhydrophobicity, formed through island growth of the aggregates. The optimum conditions for well-adhered superhydrophobic films produced films with a highly textured morphology, which possessed a water contact angle of 162 ± 2° and a sliding angle of <5°. Superhydrophobicity was maintained after ultraviolet exposure (14 days at 365 nm), heat treatment (5 h at 300 °C and 5 h at 400 °C), 300 tape peel cycles, and exposure to ethanol and toluene (5 h each).

3.
Chem Soc Rev ; 51(20): 8476-8583, 2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36189687

RESUMO

Liquid-repellent surfaces, such as superhydrophobic surfaces, superoleophobic surfaces, and slippery liquid-infused surfaces, have drawn keen research interest from the communities engaged in chemical synthesis, interfacial chemistry, surface engineering, bionic manufacturing and micro-nano machining. This is due to their great potential applications in liquid-proofing, self-cleaning, chemical resistance, anti-icing, water/oil remediation, biomedicine, etc. However, poor robustness and durability that notably hinders the real-world applications of such surfaces remains their Achilles heel. The past few years have witnessed rapidly increasing publications that address the robustness and durability of liquid-repellent surfaces, and many breakthroughs have been achieved. This review provides an overview of the recent progress made towards robust and durable liquid-repellent surfaces. First, we discuss the wetting of solid surface and its generally-adopted characterisation methods, and introduce typical liquid-repellent surfaces. Second, we focus on various evaluation methods of the robustness and durability of liquid-repellent surfaces. Third, the recent advances in design and fabrication of robust and durable liquid-repellent surfaces are reviewed in detail. Fourth, we present the applications where these surfaces have been employed in fields like chemistry, engineering, biology and in daily life. Finally, we discuss the possible research perspectives in robust and durable liquid-repellent surfaces. By presenting such state-of-the-art of this significant and fast-developing area, we believe that this review will inspire multidisciplinary scientific communities and industrial circles to develop novel liquid-repellent surfaces that can meet the requirements of various real-world applications.


Assuntos
Água , Interações Hidrofóbicas e Hidrofílicas , Propriedades de Superfície , Água/química , Molhabilidade
4.
Angew Chem Int Ed Engl ; 62(16): e202300608, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-36809576

RESUMO

The electrochemical effect of isotope (EEI) of water is introduced in the Zn-ion batteries (ZIBs) electrolyte to deal with the challenge of severe side reactions and massive gas production. Due to the low diffusion and strong coordination of ions in D2 O, the possibility of side reactions is decreased, resulting in a broader electrochemically stable potential window, less pH change, and less zinc hydroxide sulfate (ZHS) generation during cycling. Moreover, we demonstrate that D2 O eliminates the different ZHS phases generated by the change of bound water during cycling because of the consistently low local ion and molecule concentration, resulting in a stable interface between the electrode and electrolyte. The full cells with D2 O-based electrolyte demonstrated more stable cycling performance which displayed ∼100 % reversible efficiencies after 1,000 cycles with a wide voltage window of 0.8-2.0 V and 3,000 cycles with a normal voltage window of 0.8-1.9 V at a current density of 2 A g-1 .

5.
Langmuir ; 38(25): 7825-7832, 2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35696726

RESUMO

In this study, a superhydrophobic coating on glass has been prepared through a single-step aerosol-assisted chemical vapor deposition (AACVD) process. During the process, an aerosolized precursor containing polydimethylsiloxane, epoxy resin, and stearic acid functionalized Al-doped ZnO nanoparticles was deposited onto the glass at 350 °C. X-ray photoelectron spectroscopy, scanning electron microscopy, and atomic force microscopy showed that the precursor was successfully coated and formed a nano/microstructure (surface roughness: 378.0 ± 46.1 nm) on the glass surface. The coated surface had a water contact angle of 159.1 ± 1.2°, contact angle hysteresis of 2.2 ± 1.7°, and rolling off-angle of 1°, indicating that it was superhydrophobic. In the self-cleaning test of the coated surface at a tilted angle of 20°, it was shown that water droplets rolled and washed out dirt on the surface. The stability tests showed that the surface remained superhydrophobic after 120 h of exposure to ultraviolet (UV) irradiation and even after heat exposure at 350 °C. In addition, the surface was highly repellent to water solutions of pH 1-13. The results showed that the addition of the functionalized nanoparticles into the precursor allowed for the control of surface roughness and provided a simplified single-step fabrication process of the superhydrophobic surface. This provides valuable information for developing the manufacturing process for superhydrophobic surfaces.

6.
Angew Chem Int Ed Engl ; 61(31): e202205901, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35474268

RESUMO

The design of new reductive routes to low oxidation state aluminium (Al) compounds offers the opportunity to better understand redox processes at the metal centre and develop reactivity accordingly. Here, a monomeric AlI compound acts as a stoichiometric reducing agent towards a series of AlIII dihydrides, leading to the formation of new low oxidation state species including symmetric and asymmetric dihydrodialanes, and a masked dialumene. These compounds are formed by a series of equilibrium processes involving AlI , AlII and AlIII species and product formation can be manipulated by fine-tuning the reaction conditions. The transient formation of monomeric AlI compounds is proposed: this is shown to be energetically viable by computational (DFT) investigations and reactivity studies show support for the formation of AlI species. Importantly, despite the potential for the equilibrium mixtures to lead to ill-defined reactivity, controlled reactivity of these low oxidation state species is observed.

7.
Inorg Chem ; 60(15): 10958-10969, 2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34270214

RESUMO

The mechanism of the aluminum-mediated hydroboration of terminal alkynes was investigated using a series of novel aluminum amidinate hydride and alkyl complexes bearing symmetric and asymmetric ligands. The new aluminum complexes were fully characterized and found to facilitate the formation of the (E)-vinylboronate hydroboration product, with rates and orders of reaction linked to complex size and stability. Kinetic analysis and stoichiometric reactions were used to elucidate the mechanism, which we propose to proceed via the initial formation of an Al-borane adduct. Additionally, the most unstable complex was found to promote decomposition of the pinacolborane substrate to borane (BH3), which can then proceed to catalyze the reaction. This mechanism is in contrast to previously reported aluminum hydride-catalyzed hydroboration reactions, which are proposed to proceed via the initial formation of an aluminum acetylide, or by hydroalumination to form a vinylboronate ester as the first step in the catalytic cycle.

8.
Molecules ; 26(11)2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-34070641

RESUMO

A set of heteroleptic ethyl zinc ß-amidoenoates (1, 2) and ß-ketoiminates (3) of the form [LZnEt]2 with varying steric bulk have been synthesised via the reaction of diethylzinc with ß-aminoenoate ligands HL1 and HL2 and ß-ketoimine HL3. These complexes have been characterised via 1H and 13C NMR, mass spectrometry and single-crystal X-ray diffraction, which unambiguously determined all three structures as dimeric species in the solid state. We observe the unusual dimerisation of 1 and 2 through coordination of the central zinc atom to the methine carbon of the second monomer, which gives these complexes high reactivity. The thermal properties of complex 3 are explored via thermal gravimetric analysis (TGA), to investigate their potential as single-source precursors to zinc oxide, which shows that 3 has a significantly lower decomposition temperature as compared to its bis-ligated counterpart [Zn(L3)2], which gives 3 promise as a single-source precursor to zinc oxide.

9.
J Am Chem Soc ; 142(47): 19874-19878, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33170691

RESUMO

The reaction of the copper(I) ß-diketiminate copper complex {(Cu(BDIMes))2(µ-C6H6)} (BDIMes = N,N'-bis(2,4,6-trimethylphenyl)pentane-2,4-diiminate) with the low-valent group 13 metal ß-diketiminates M(BDIDip) (M = Al or Ga; BDIDip = N,N'-bis(2,6-diisopropylphenyl)pentane-2,4-diiminate) in toluene afforded the complexes {(BDIMes)CuAl(BDIDip)} and {(BDIMes)CuGa(BDIDip)}. These feature unsupported copper-aluminum or copper-gallium bonds with short metal-metal distances, Cu-Al = 2.3010(6) Å and Cu-Ga = 2.2916(5) Å. Density functional theory (DFT) calculations showed that approximately half of the calculated association enthalpies can be attributed to London dispersion forces.

10.
Langmuir ; 36(45): 13426-13438, 2020 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-33146540

RESUMO

In recent decades, there has been a growing interest in the development of functional, fluorine-free superhydrophobic surfaces with improved adhesion for better applicability into real-world problems. Here, we compare two different methods, spin coating and aerosol-assisted chemical vapor deposition (AACVD), for the synthesis of transparent fluorine-free superhydrophobic coatings. The material was made from a nanocomposite of (3-aminopropyl)triethoxysilane (APTES) functional mesoporous silica nanoparticles and titanium cross-linked polydimethylsiloxane with particle concentrations between 9 to 50 wt %. The silane that was used to lower the surface energy consisted of a long hydrocarbon chain without fluorine groups to reduce the environmental impact of the composite coating. Both spin coating and AACVD resulted in the formation of superhydrophobic surfaces with advancing contact angles up to 168°, a hysteresis of 3°, and a transparency of 90% at 550 nm. AACVD has proven to produce more uniform coatings with concentrations as low as 9 wt %, reaching superhydrophobicity. The metal oxide cross-linking improves the adhesion of the coating to the glass. Overall, AACVD was the more optimal method to prepare superhydrophobic coatings compared to spin coating due to higher contact angles, adhesion, and scalability of the fabrication process.

11.
Chemistry ; 25(48): 11337-11345, 2019 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-31241218

RESUMO

Type I heterojunction films of α-Fe2 O3 /ZnO are reported here as a non-titania based photocatalyst, which shows remarkable enhancement in the photocatalytic properties towards stearic acid degradation under UVA-light exposure (λ=365 nm), with a quantum efficiency of ξ=4.42±1.54×10-4 molecules degraded/photon, which was about 16 times greater than that of α-Fe2 O3 , and 2.5 times greater than that of ZnO. Considering that the degradation of stearic acid requires 104 electron transfers for each molecule, this represents an overall quantum efficiency of 4.60 % for the α-Fe2 O3 /ZnO heterojunction. Time-resolved transient absorption spectroscopy (TAS) revealed the charge-carrier behaviour responsible for this increase in activity. Photogenerated electrons, formed in the ZnO layer, were transferred into the α-Fe2 O3 layer on the pre-µs timescale, which reduced electron-hole recombination. This increased the lifetime of photogenerated holes formed in ZnO, which oxidise stearic acid. The heterojunction α-Fe2 O3 /ZnO films grown herein show potential environmental applications as coatings for self-cleaning windows and surfaces.

12.
Inorg Chem ; 58(15): 10346-10356, 2019 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-31334640

RESUMO

A comparison of chlorido-gallium functionalized alkoxides as precursors for aerosol-assisted chemical vapor deposition (AACVD) was carried out. Variable-temperature (VT)-NMR studies were used to probe the fluxional behavior of these alkoxides in solution, and hence their utility as precursors. The synthesis involved the initial isolation of the dimer [GaCl(NMe2)2]2 via a salt metathesis route from GaCl3 and 2 equiv of LiNMe2. This dimer was then reacted with 4 equiv of HOCH2CH2CH2NEt2, resulting in the formation of Ga[µ-(OCH2CH2CH2NEt2)2GaCl2]3 (1). Mass spectrometry and VT-NMR confirmed the oligomeric structure of 1. Tuning of the ligand properties, namely, the chain length and substituents on N, resulted in formation of the monomers [GaCl(OR)2] (R = CH2CH2NEt2, (2); CH2CH2CH2NMe2, (3)). VT-NMR studies, supported by density functional theory calculations, confirmed that the ligands in both 2 and 3 possess a hemilabile coordination to the gallium center, owing to either a shorter carbon backbone (2) or less steric hindrance (3). Both 2 and 3 were selected for use as precursors for AACVD: deposition at 450 °C gave thin films of amorphous Ga2O3, which were subsequently annealed at 1000 °C to afford crystalline Ga2O3 material. The films were fully characterized by X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, UV-visible spectroscopy, and energy dispersive X-ray analysis.

13.
Langmuir ; 34(44): 13305-13311, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30347162

RESUMO

Frequent oil spills and industrial emissions of organic solvents cause serious environmental problems. Therefore, finding a high-performance absorbent material is necessary but also challenging. Here we present a very simple method to fabricate a magnetic porous silicone that exhibits excellent absorbency, fast magnetic responsiveness, high elasticity, stretchability, and high chemical stability. The porous silicone instantly adsorbs any oil floating on water in a complex environment under magnetic field driving, without human operation, and can also separate the oil/water mixture automatically and quickly at high efficiency using an external pump. The oil absorption capacity and mechanical properties, such as compressibility and stretchability, were robust even under corrosive conditions or UV exposure. The robust, reusable magnetic porous silicone is a promising candidate for the large-scale industrial separation of organic solvents/water mixtures in harsh conditions.

14.
Soft Matter ; 14(43): 8821-8827, 2018 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-30346465

RESUMO

Gelation processes grant access to a wealth of soft materials with tailorable properties, in applications as diverse as environmental remediation, biomedicine and electronics. Several classes of self-assembling gelators have been studied and employ non-covalent bonds to direct assembly, but recently attention has come to focus on how the overall shape of the gelator molecule impacts its gelation. Here we study a new sub-family of low molecular weight organogelators and explore how steric rearrangement influences their gelation. The gels produced are characterised with X-ray diffraction and small-angle neutron scattering (SANS) to probe their ex situ and in situ gelation mechanisms. The best examples were then tested for environmental remediation applications, gelling petrol and oils in the presence of water and salts.


Assuntos
Recuperação e Remediação Ambiental , Ureia/química , Carbamatos/química , Géis , Modelos Moleculares , Conformação Molecular , Peso Molecular , Solventes/química
15.
Sensors (Basel) ; 18(3)2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29494504

RESUMO

Analyte sensitivity for gas sensors based on semiconducting metal oxides should be highly dependent on the film thickness, particularly when that thickness is on the order of the Debye length. This thickness dependence has previously been demonstrated for SnO2 and inferred for TiO2. In this paper, TiO2 thin films have been prepared by Atomic Layer Deposition (ALD) using titanium isopropoxide and water as precursors. The deposition process was performed on standard alumina gas sensor platforms and microscope slides (for analysis purposes), at a temperature of 200 °C. The TiO2 films were exposed to different concentrations of CO, CH4, NO2, NH3 and SO2 to evaluate their gas sensitivities. These experiments showed that the TiO2 film thickness played a dominant role within the conduction mechanism and the pattern of response for the electrical resistance towards CH4 and NH3 exposure indicated typical n-type semiconducting behavior. The effect of relative humidity on the gas sensitivity has also been demonstrated.

17.
Chemistry ; 23(62): 15543-15552, 2017 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-28868621

RESUMO

Sustainability is an increasingly important topic in the design and manufacture of materials, with the need to reduce the environmental impact of producing materials being of paramount significance. A competing interest to this is the ability to produce functional materials in large volumes from a fast, on-line process, which can be integrated easily into existing industrial setups. Herein, we present aerosol-assisted chemical vapour deposition (AACVD) routes to advanced functional materials. We will show that by careful design of precursors and manipulation of deposition conditions, it is possible to achieve high sustainability whilst maintaining fast growth rates and large scale production of thin film functional materials.

18.
Chem Soc Rev ; 45(4): 1036-64, 2016 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-26446057

RESUMO

This critical review focuses on the solution based chemical vapour deposition (CVD) of main group materials with particular emphasis on their current and potential applications. Deposition of thin films of main group materials, such as metal oxides, sulfides and arsenides, have been researched owing to the array of applications which utilise them including solar cells, transparent conducting oxides (TCOs) and window coatings. Solution based CVD processes, such as aerosol-assisted (AA)CVD have been developed due to their scalability and to overcome the requirement of suitably volatile precursors as the technique relies on the solubility rather than volatility of precursors which vastly extends the range of potentially applicable compounds. An introduction into the applications and precursor requirements of main group materials will be presented first followed by a detailed discussion of their deposition reviewed according to this application. The challenges and prospects for further enabling research in terms of emerging main group materials will be discussed.

19.
Angew Chem Int Ed Engl ; 56(28): 8221-8225, 2017 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-28520233

RESUMO

A metal-free photoanode nanojunction architecture, composed of B-doped carbon nitride nanolayer and bulk carbon nitride, was fabricated by a one-step approach. This type of nanojunction (s-BCN) overcomes a few intrinsic drawbacks of carbon nitride film (severe bulk charge recombination and slow charge transfer). The top layer of the nanojunction has a depth of ca. 100 nm and the bottom layer is ca. 900 nm. The nanojunction photoanode results into a 10-fold higher photocurrent than bulk graphitic carbon nitride (G-CN) photoanode, with a record photocurrent density of 103.2 µA cm-2 at 1.23 V vs. RHE under one sun irradiation and an extremely high incident photon-to-current efficiency (IPCE) of ca. 10 % at 400 nm. Electrochemical impedance spectroscopy, Mott-Schottky plots, and intensity-modulated photocurrent spectroscopy show that such enhancement is mainly due to the mitigated deep trap states, a more than 10 times faster charge transfer rate and nearly three times higher conductivity due to the nanojunction architecture.

20.
Chemistry ; 20(33): 10503-13, 2014 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-25043194

RESUMO

Bis-ß-ketoimine ligands of the form [(CH2 )n {N(H)C(Me)CHC(Me)O}2 ] (L(n) H2 , n=2, 3 and 4) were employed in the formation of a range of gallium complexes [Ga(L(n) )X] (X=Cl, Me, H), which were characterised by NMR spectroscopy, mass spectrometry and single-crystal X-ray diffraction analysis. The ß-ketoimine ligands have also been used for the stabilisation of rare gallium hydride species [Ga(L(n) )H] (n=2 (7); n=3 (8)), which have been structurally characterised for the first time, confirming the formation of five-coordinate, monomeric species. The stability of these hydrides has been probed through thermal analysis, revealing stability at temperatures in excess of 200 °C. The efficacy of all the gallium ß-ketoiminate complexes as molecular precursors for the deposition of gallium oxide thin films by chemical vapour deposition (CVD) has been investigated through thermogravimetric analysis and deposition studies, with the best results being found for a bimetallic gallium methyl complex [L(3) {GaMe2 }2 ] (5) and the hydride [Ga(L(3) )H] (8). The resulting films (F5 and F8, respectively) were amorphous as-deposited and thus were characterised primarily by XPS, EDXA and SEM techniques, which showed the formation of stoichiometric (F5) and oxygen-deficient (F8) Ga2 O3 thin films.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa