Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Synchrotron Radiat ; 29(Pt 3): 896-907, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35511023

RESUMO

The increase in successful adaptations of serial crystallography at synchrotron radiation sources continues. To date, the number of serial synchrotron crystallography (SSX) experiments has grown exponentially, with over 40 experiments reported so far. In this work, we report the first SSX experiments with viscous jets conducted at ALBA beamline BL13-XALOC. Small crystals (15-30 µm) of five soluble proteins (lysozyme, proteinase K, phycocyanin, insulin and α-spectrin-SH3 domain) were suspended in lipidic cubic phase (LCP) and delivered to the X-ray beam with a high-viscosity injector developed at Arizona State University. Complete data sets were collected from all proteins and their high-resolution structures determined. The high quality of the diffraction data collected from all five samples, and the lack of specific radiation damage in the structures obtained in this study, confirm that the current capabilities at the beamline enables atomic resolution determination of protein structures from microcrystals as small as 15 µm using viscous jets at room temperature. Thus, BL13-XALOC can provide a feasible alternative to X-ray free-electron lasers when determining snapshots of macromolecular structures.


Assuntos
Lasers , Síncrotrons , Cristalografia por Raios X , Humanos , Substâncias Macromoleculares , Proteínas , Viscosidade
3.
Biochim Biophys Acta ; 1861(11): 1681-1692, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27500637

RESUMO

Pseudomonas aeruginosa expresses a secreted LOX-isoform (PA-LOX, LoxA) capable of oxidizing polyenoic fatty acids to hydroperoxy derivatives. Here we report high-level expression of this enzyme in E. coli and its structural and functional characterization. Recombinant PA-LOX oxygenates polyenoic fatty acids including eicosapentaenoic acid and docosahexaenoic acid to the corresponding (n-6)S-hydroperoxy derivatives. This reaction involves abstraction of the proS-hydrogen from the n-8 bisallylic methylene. PA-LOX lacks major leukotriene synthase activity but converts 5S-HETE and 5S,6R/S-DiHETE to anti-inflammatory and pro-resolving lipoxins. It also exhibits phospholipid oxygenase activity as indicated by the formation of a specific pattern of oxygenation products from different phospholipid subspecies. Multiple mutagenesis studies revealed that PA-LOX does not follow classical concepts explaining the reaction specificity of mammalian LOXs. The crystal structure of PA-LOX was solved with resolutions of up to 1.48Å and its polypeptide chain is folded as single domain. The substrate-binding pocket consists of two fatty acid binding subcavities and lobby. Subcavity-1 contains the catalytic non-heme iron. A phosphatidylethanolamine molecule occupies the substrate-binding pocket and its sn1 fatty acid is located close to the catalytic non-heme iron. His377, His382, His555, Asn559 and the C-terminal Ile685 function as direct iron ligands and a water molecule (hydroxyl) completes the octahedral ligand sphere. Although the biological relevance of PA-LOX is still unknown its functional characteristics (lipoxin synthase activity) implicate this enzyme in a bacterial evasion strategy aimed at downregulating the hosts' immune system.


Assuntos
Lipoxigenase/química , Lipoxigenase/metabolismo , Pseudomonas aeruginosa/enzimologia , Animais , Ácido Araquidônico/química , Ácido Araquidônico/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Ativação Enzimática , Estabilidade Enzimática , Ácidos Graxos/metabolismo , Cinética , Leucotrienos/metabolismo , Ligantes , Ácido Linoleico/química , Ácido Linoleico/metabolismo , Lipoxinas/biossíntese , Modelos Moleculares , Proteínas Mutantes/metabolismo , Oxirredução , Coelhos , Proteínas Recombinantes/metabolismo , Estereoisomerismo , Homologia Estrutural de Proteína , Relação Estrutura-Atividade , Especificidade por Substrato , Temperatura
4.
Biochemistry ; 55(25): 3528-41, 2016 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-27293030

RESUMO

Catalase-peroxidases (KatGs) are unique bifunctional heme peroxidases with an additional posttranslationally formed redox-active Met-Tyr-Trp cofactor that is essential for catalase activity. On the basis of studies of bacterial KatGs, controversial mechanisms of hydrogen peroxide oxidation were proposed. The recent discovery of eukaryotic KatGs with differing pH optima of catalase activity now allows us to scrutinize those postulated reaction mechanisms. In our study, secreted KatG from the fungus Magnaporthe grisea (MagKatG2) was used to analyze the role of a remote KatG-typical mobile arginine that was shown to interact with the Met-Tyr-Trp adduct in a pH-dependent manner in bacterial KatGs. Here we present crystal structures of MagKatG2 at pH 3.0, 5.5, and 7.0 and investigate the mobility of Arg461 by molecular dynamics simulation. Data suggest that at pH ≥4.5 Arg461 mostly interacts with the deprotonated adduct Tyr. Elimination of Arg461 by mutation to Ala slightly increases the thermal stability but does not alter the active site architecture or the kinetics of cyanide binding. However, the variant Arg461Ala lost the wild-type-typical optimum of catalase activity at pH 5.25 (kcat = 6450 s(-1)) but exhibits a broad plateau between pH 4.5 and 7.5 (kcat = 270 s(-1) at pH 5.5). Moreover, significant differences in the kinetics of interconversion of redox intermediates of wild-type and mutant protein mixed with either peroxyacetic acid or hydrogen peroxide are observed. These findings together with published data from bacterial KatGs allow us to propose a role of Arg461 in the H2O2 oxidation reaction of KatG.


Assuntos
Arginina/química , Proteínas de Bactérias/metabolismo , Peróxido de Hidrogênio/metabolismo , Magnaporthe/enzimologia , Peroxidases/metabolismo , Arginina/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Varredura Diferencial de Calorimetria , Domínio Catalítico , Dicroísmo Circular , Cristalografia por Raios X , Peróxido de Hidrogênio/química , Cinética , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Mutação/genética , Oxidantes/metabolismo , Oxirredução , Peroxidases/química , Peroxidases/genética
5.
Biochemistry ; 54(35): 5425-38, 2015 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-26290940

RESUMO

Recently, it was demonstrated that bifunctional catalase-peroxidases (KatGs) are found not only in archaea and bacteria but also in lower eukaryotes. Structural studies and preliminary biochemical data of the secreted KatG from the rice pathogen Magnaporthe grisea (MagKatG2) suggested both similar and novel features when compared to those of the prokaryotic counterparts studied so far. In this work, we demonstrate the role of the autocatalytically formed redox-active Trp140-Tyr273-Met299 adduct of MagKatG2 in (i) the maintenance of the active site architecture, (ii) the catalysis of hydrogen peroxide dismutation, and (iii) the protein stability by comparing wild-type MagKatG2 with the single mutants Trp140Phe, Tyr273Phe, and Met299Ala. The impact of disruption of the covalent bonds between the adduct residues on the spectral signatures and heme cavity architecture was small. By contrast, loss of its integrity converts bifunctional MagKatG2 to a monofunctional peroxidase of significantly reduced thermal stability. It increases the accessibility of ligands due to the increased flexibility of the KatG-typical large loop 1 (LL1), which contributes to the substrate access channel and anchors at the adduct Tyr. We discuss these data with respect to those known from prokaryotic KatGs and in addition present a high-resolution structure of an oxoiron compound of MagKatG2.


Assuntos
Catalase/metabolismo , Células Eucarióticas/metabolismo , Peróxido de Hidrogênio/metabolismo , Peroxidase/metabolismo , Catalase/química , Catálise , Magnaporthe/metabolismo , Metionina/química , Metionina/metabolismo , Peroxidase/química , Estabilidade Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Especificidade por Substrato , Triptaminas/química , Triptaminas/metabolismo , Tirosina/química , Tirosina/metabolismo
6.
J Am Chem Soc ; 136(20): 7249-52, 2014 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-24785434

RESUMO

Catalase peroxidases (KatG's) are bifunctional heme proteins that can disproportionate hydrogen peroxide (catalatic reaction) despite their structural dissimilarity with monofunctional catalases. Using X-ray crystallography and QM/MM calculations, we demonstrate that the catalatic reaction of KatG's involves deprotonation of the active-site Trp, which plays a role similar to that of the distal His in monofunctional catalases. The interaction of a nearby mobile arginine with the distal Met-Tyr-Trp essential adduct (in/out) acts as an electronic switch, triggering deprotonation of the adduct Trp.


Assuntos
Catalase/metabolismo , Peroxidases/metabolismo , Triptofano/metabolismo , Catalase/química , Domínio Catalítico , Cristalografia por Raios X , Ativação Enzimática , Concentração de Íons de Hidrogênio , Modelos Moleculares , Peroxidases/química , Teoria Quântica , Triptofano/química
7.
FASEB J ; 27(12): 4811-21, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23985801

RESUMO

Lipoxygenases (LOXs), which are essential in eukaryotes, have no confirmed function in prokaryotes that are devoid of polyunsaturated fatty acids. The structure of a secretable LOX from Pseudomonas aeruginosa (Pa_LOX), the first available from a prokaryote, presents significant differences with respect to eukaryotic LOXs, including a cluster of helices acting as a lid to the active center. The mobility of the lid and the structural variability of the N-terminal region of Pa_LOX was confirmed by comparing 2 crystal forms. The binding pocket contains a phosphatidylethanolamine phospholipid with branches of 18 (sn-1) and 14/16 (sn-2) carbon atoms in length. Carbon atoms from the sn-1 chain approach the catalytic iron in a manner that sheds light on how the enzymatic reaction might proceed. The findings in these studies suggest that Pa_LOX has the capacity to extract and modify unsaturated phospholipids from eukaryotic membranes, allowing this LOX to play a role in the interaction of P. aeruginosa with host cells.


Assuntos
Lipoxigenase/química , Fosfatidiletanolaminas/metabolismo , Pseudomonas aeruginosa/enzimologia , Motivos de Aminoácidos , Sequência de Aminoácidos , Domínio Catalítico , Lipoxigenase/metabolismo , Simulação de Acoplamento Molecular , Dados de Sequência Molecular , Fosfatidiletanolaminas/química , Ligação Proteica
8.
J Biol Chem ; 287(38): 32254-62, 2012 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-22822072

RESUMO

Catalase-peroxidases (KatGs) are bifunctional heme enzymes widely spread in archaea, bacteria, and lower eukaryotes. Here we present the first crystal structure (1.55 Å resolution) of an eukaryotic KatG, the extracellular or secreted enzyme from the phytopathogenic fungus Magnaporthe grisea. The heme cavity of the homodimeric enzyme is similar to prokaryotic KatGs including the unique distal (+)Met-Tyr-Trp adduct (where the Trp is further modified by peroxidation) and its associated mobile arginine. The structure also revealed several conspicuous peculiarities that are fully conserved in all secreted eukaryotic KatGs. Peculiarities include the wrapping at the dimer interface of the N-terminal elongations from the two subunits and cysteine residues that cross-link the two subunits. Differential scanning calorimetry and temperature- and urea-mediated unfolding followed by UV-visible, circular dichroism, and fluorescence spectroscopy combined with site-directed mutagenesis demonstrated that secreted eukaryotic KatGs have a significantly higher conformational stability as well as a different unfolding pattern when compared with intracellular eukaryotic and prokaryotic catalase-peroxidases. We discuss these properties with respect to the structure as well as the postulated roles of this metalloenzyme in host-pathogen interactions.


Assuntos
Catalase/química , Peroxidase/química , Arginina/química , Varredura Diferencial de Calorimetria/métodos , Dicroísmo Circular , Sequência Conservada , Cristalografia por Raios X/métodos , Escherichia coli/enzimologia , Peróxido de Hidrogênio/química , Magnaporthe/enzimologia , Metaloproteínas/química , Mutagênese Sítio-Dirigida , Estresse Oxidativo , Oxigênio/química , Filogenia , Conformação Proteica , Desnaturação Proteica , Dobramento de Proteína , Espectrofotometria Ultravioleta/métodos
9.
Arch Biochem Biophys ; 525(2): 102-10, 2012 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-22209752

RESUMO

About thirty years ago the crystal structures of the heme catalases from Penicillium vitale (PVC) and, a few months later, from bovine liver (BLC) were published. Both enzymes were compact tetrameric molecules with subunits that, despite their size differences and the large phylogenetic separation between the two organisms, presented a striking structural similarity for about 460 residues. The high conservation, confirmed in all the subsequent structures determined, suggested a strong pressure to preserve a functional catalase fold, which is almost exclusively found in these mono-functional heme catalases. However, even in the absence of the catalase fold an efficient catalase activity is also found in the heme containing catalase-peroxidase proteins. The structure of these broad substrate range enzymes, reported for the first time less than ten years ago from the halophilic archaebacterium Haloarcula marismortui (HmCPx) and from the bacterium Burkholderia pseudomallei (BpKatG), showed a heme pocket closely related to that of plant peroxidases, though with a number of unique modifications that enable the catalase reaction. Despite the wealth of structural information already available, for both monofunctional catalases and catalase-peroxidases, a number of unanswered major questions require continuing structural research with truly innovative approaches.


Assuntos
Bioquímica/história , Catalase/química , Heme/química , Animais , Burkholderia pseudomallei/enzimologia , Bovinos , Cristalografia por Raios X/métodos , Proteínas de Escherichia coli/química , Haloarcula marismortui/enzimologia , História do Século XX , Ligantes , Fígado/enzimologia , Modelos Moleculares , Conformação Molecular , Penicillium/enzimologia , Filogenia
10.
Arch Biochem Biophys ; 526(1): 54-9, 2012 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-22820098

RESUMO

The main channel for H(2)O(2) access to the heme cavity in large subunit catalases is twice as long as in small subunit catalases and is divided into two distinct parts. Like small subunit catalases, the 15Å of the channel adjacent to the heme has a predominantly hydrophobic surface with only weak water occupancy, but the next 15Å extending to the protein surface is hydrophilic and contains a complex water matrix in multiple passages. At the approximate junction of these two sections are a conserved serine and glutamate that are hydrogen bonded and associated with H(2)O(2) in inactive variants. Mutation of these residues changed the dimensions of the channel, both enlarging and constricting it, and also changed the solvent occupancy in the hydrophobic, inner section of the main channel. Despite these structural changes and the prominent location of the residues in the channel, the variants exhibited less than a 2-fold change in the k(cat) and apparent K(M) kinetic constants. These results reflect the importance of the complex multi-passage structure of the main channel. Surprisingly, mutation of either the serine or glutamate to an aliphatic side chain interfered with heme oxidation to heme d.


Assuntos
Catalase/química , Catalase/metabolismo , Escherichia coli/enzimologia , Heme/metabolismo , Peróxido de Hidrogênio/metabolismo , Catalase/genética , Cinética , Modelos Moleculares , Mutação , Oxirredução , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa