Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
J Exp Bot ; 74(10): 3104-3121, 2023 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-36869735

RESUMO

Cysteine-rich receptor-like kinases (CRKs) are a large family of plasma membrane-bound receptors ubiquitous in higher plants. However, despite their prominence, their biological roles have remained largely elusive so far. In this study we report the characterization of an Arabidopsis mutant named crk10-A397T in which alanine 397 has been replaced by a threonine in the αC helix of the kinase domain of CRK10, known to be a crucial regulatory module in mammalian kinases. The crk10-A397T mutant is a dwarf that displays collapsed xylem vessels in the root and hypocotyl, whereas the vasculature of the inflorescence develops normally. In situ phosphorylation assays with His-tagged wild type and crk10-A397T versions of the CRK10 kinase domain revealed that both alleles are active kinases capable of autophosphorylation, with the newly introduced threonine acting as an additional phosphorylation site in crk10-A397T. Transcriptomic analysis of wild type and crk10-A397T mutant hypocotyls revealed that biotic and abiotic stress-responsive genes are constitutively up-regulated in the mutant, and a root-infection assay with the vascular pathogen Fusarium oxysporum demonstrated that the mutant has enhanced resistance to this pathogen compared with wild type plants. Taken together our results suggest that crk10-A397T is a gain-of-function allele of CRK10, the first such mutant to have been identified for a CRK in Arabidopsis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Mutação Puntual , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo
2.
New Phytol ; 236(3): 974-988, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35860865

RESUMO

In temperate zones, fruit trees regulate their annual growth cycle to seasonal environmental changes. During the cold season, growth is limited by both environmental and genetic factors. After the exposure to low temperature and fulfillment of chilling requirements, mild temperatures promote the growth and flowering. However, an insufficient chilling exposure may lead to nonuniform blooming, with a negative impact on fruit set. To gain insights into flower development in the fruit tree buds, peach is an interesting model, the flower and vegetative bud being distinct organs. To understand how flower bud development is regulated, we integrated cytological observations and epigenetic and chromatin genome-wide data with transcriptional changes to identify the main regulatory factors involved in flower development during chilling accumulation. We demonstrated that growth cessation does not occur in peach flower buds during chilling accumulation, but that there are changes in transcript abundance of key genes of hormone metabolism and flower bud development, distribution of histone modifications (H3K4me3 and H3K27me3) and DNA methylation. Altogether, our findings indicate that during the cold season the flower bud is in a nondormant state and that the chilling experience allows flower differentiation to be completed.


Assuntos
Prunus persica , Cromatina/metabolismo , Temperatura Baixa , Flores/fisiologia , Regulação da Expressão Gênica de Plantas , Histonas/metabolismo , Hormônios/metabolismo , Prunus persica/genética
3.
J Exp Bot ; 73(11): 3651-3670, 2022 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-35176760

RESUMO

Witches' broom disease of cacao is caused by the pathogenic fungus Moniliophthora perniciosa. By using tomato (Solanum lycopersicum) cultivar Micro-Tom (MT) as a model system, we investigated the physiological and metabolic consequences of M. perniciosa infection to determine whether symptoms result from sink establishment during infection. Infection of MT by M. perniciosa caused reductions in root biomass and fruit yield, a decrease in leaf gas exchange, and down-regulation of photosynthesis-related genes. The total leaf area and water potential decreased, while ABA levels, water conductance/conductivity, and ABA-related gene expression increased. Genes related to sugar metabolism and those involved in secondary cell wall deposition were up-regulated upon infection, and the concentrations of sugars, fumarate, and amino acids increased. 14C-glucose was mobilized towards infected MT stems, but not in inoculated stems of the MT line overexpressing CYTOKININ OXIDASE-2 (35S::AtCKX2), suggesting a role for cytokinin in establishing a sugar sink. The up-regulation of genes involved in cell wall deposition and phenylpropanoid metabolism in infected MT, but not in 35S::AtCKX2 plants, suggests establishment of a cytokinin-mediated sink that promotes tissue overgrowth with an increase in lignin. Possibly, M. perniciosa could benefit from the accumulation of secondary cell walls during its saprotrophic phase of infection.


Assuntos
Agaricales , Cacau , Solanum lycopersicum , Agaricales/genética , Cacau/genética , Parede Celular , Citocininas , Solanum lycopersicum/genética , Solanum lycopersicum/microbiologia , Doenças das Plantas/microbiologia , Açúcares , Água
4.
Phytopathology ; 112(4): 842-851, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34698539

RESUMO

Partial resistance to the biotrophic fungal pathogen Claviceps purpurea, causal agent of ergot, has been found that colocates with mutant alleles of the wheat Reduced height (Rht) loci on chromosomes 4B and 4D. These Rht loci represent the wheat orthologs of the Arabidopsis Della genes. To investigate the role of the Rht mutant DELLA proteins in ergot resistance, we assessed C. purpurea infection in wheat near-isogenic lines (NILs) carrying the gibberellic acid (GA)-insensitive semidwarf alleles Rht-B1b and Rht-D1b and the severe dwarf alleles Rht-B1c and Rht-D1c. NILs of the GA-sensitive alleles Rht8 (chromosome 2D) and Rht12 (chromosome 5A) were also included. A general trend toward increased resistance to C. purpurea, with smaller and lighter sclerotia, was observed on the NILs Rht-B1b, Rht-D1b, Rht-B1c, and Rht-D1c, and also on Rht8. Levels of the bioactive GA4 and the auxin indole-3-acetic acid increased after inoculation with C. purpurea, following similar patterns and implicating a potential auxin-mediated induction of GA biosynthesis. In contrast, jasmonic acid (JA) levels fell in the parental lines 'Mercia' and 'Maris Huntsman' after inoculation with C. purpurea, but increased in all the Rht-mutant NILs. Inoculation with C. purpurea did not show any informative changes in the levels of salicylic acid. Our results suggest that GA-mediated degradation of the DELLA proteins and down-regulation of JA-signaling pathways supports infection of wheat by C. purpurea. As these responses are generally associated with necrotrophic fungal pathogens, we propose that the biotroph C. purpurea may have a necrotrophic growth stage.


Assuntos
Triticum , Claviceps/genética , Hormônios/metabolismo , Ácidos Indolacéticos/metabolismo , Doenças das Plantas/microbiologia , Triticum/genética , Triticum/metabolismo
5.
Int J Mol Sci ; 23(3)2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35162959

RESUMO

Oxidative stress, defined as the excess production of reactive oxygen species (ROS) relative to antioxidant defense, plays a significant role in the development of cardiovascular diseases. Endoplasmic reticulum (ER) stress has emerged as an important source of ROS and its modulation could be cardioprotective. Previously, we demonstrated that miR-16-5p is enriched in the plasma of ischemic dilated cardiomyopathy (ICM) patients and promotes ER stress-induced apoptosis in cardiomyocytes in vitro. Here, we hypothesize that miR-16-5p might contribute to oxidative stress through ER stress induction and that targeting miR-16-5p may exert a cardioprotective role in ER stress-mediated cardiac injury. Analysis of oxidative markers in the plasma of ICM patients demonstrates that oxidative stress is associated with ICM. Moreover, we confirm that miR-16-5p overexpression promotes oxidative stress in AC16 cardiomyoblasts. We also find that, in response to tunicamycin-induced ER stress, miR-16-5p suppression decreases apoptosis, inflammation and cardiac damage via activating the ATF6-mediated cytoprotective pathway. Finally, ATF6 is identified as a direct target gene of miR-16-5p by dual-luciferase reporter assays. Our results indicate that miR-16-5p promotes ER stress and oxidative stress in cardiac cells through regulating ATF6, suggesting that the inhibition of miR-16-5p has potential as a therapeutic approach to protect the heart against ER and oxidative stress-induced injury.


Assuntos
Biomarcadores/sangue , Cardiomiopatia Dilatada/genética , MicroRNAs/genética , Miócitos Cardíacos/citologia , Tunicamicina/efeitos adversos , Adulto , Idoso , Cardiomiopatia Dilatada/sangue , Cardiomiopatia Dilatada/etiologia , Estudos de Casos e Controles , Linhagem Celular , Estresse do Retículo Endoplasmático , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Biológicos , Miócitos Cardíacos/química , Miócitos Cardíacos/efeitos dos fármacos , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Regulação para Cima/efeitos dos fármacos
6.
Plant J ; 102(5): 1026-1041, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31930587

RESUMO

Ovule primordia formation is a complex developmental process with a strong impact on the production of seeds. In Arabidopsis this process is controlled by a gene network, including components of the signalling pathways of auxin, brassinosteroids (BRs) and cytokinins. Recently, we have shown that gibberellins (GAs) also play an important role in ovule primordia initiation, inhibiting ovule formation in both Arabidopsis and tomato. Here we reveal that BRs also participate in the control of ovule initiation in tomato, by promoting an increase on ovule primordia formation. Moreover, molecular and genetic analyses of the co-regulation by GAs and BRs of the control of ovule initiation indicate that two different mechanisms occur in tomato and Arabidopsis. In tomato, GAs act downstream of BRs. BRs regulate ovule number through the downregulation of GA biosynthesis, which provokes stabilization of DELLA proteins that will finally promote ovule primordia initiation. In contrast, in Arabidopsis both GAs and BRs regulate ovule number independently of the activity levels of the other hormone. Taken together, our data strongly suggest that different molecular mechanisms could operate in different plant species to regulate identical developmental processes even, as for ovule primordia initiation, if the same set of hormones trigger similar responses, adding a new level of complexity.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Brassinosteroides/metabolismo , Giberelinas/metabolismo , Solanum lycopersicum/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Solanum lycopersicum/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
7.
Development ; 145(13)2018 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-29914969

RESUMO

Ovule formation is a complex developmental process in plants, with a strong impact on the production of seeds. Ovule primordia initiation is controlled by a gene network, including components of the signaling pathways of auxin, brassinosteroids and cytokinins. By contrast, gibberellins (GAs) and DELLA proteins, the negative regulators of GA signaling, have never been shown to be involved in ovule initiation. Here, we provide molecular and genetic evidence that points to DELLA proteins as novel players in the determination of ovule number in Arabidopsis and in species of agronomic interest, such as tomato and rapeseed, adding a new layer of complexity to this important developmental process. DELLA activity correlates positively with ovule number, acting as a positive factor for ovule initiation. In addition, ectopic expression of a dominant DELLA in the placenta is sufficient to increase ovule number. The role of DELLA proteins in ovule number does not appear to be related to auxin transport or signaling in the ovule primordia. Possible crosstalk between DELLA proteins and the molecular and hormonal network controlling ovule initiation is also discussed.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/embriologia , Giberelinas/metabolismo , Óvulo Vegetal/embriologia , Arabidopsis/citologia , Óvulo Vegetal/citologia
8.
New Phytol ; 231(1): 365-381, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33826751

RESUMO

Moniliophthora perniciosa causes witches' broom disease of cacao and inflicts symptoms suggestive of hormonal imbalance. We investigated whether infection of the tomato (Solanum lycopersicum) model system Micro-Tom (MT) by the Solanaceae (S)-biotype of Moniliophthora perniciosa, which causes stem swelling and hypertrophic growth of axillary shoots, results from changes in host cytokinin metabolism. Inoculation of an MT-transgenic line that overexpresses the Arabidopsis CYTOKININ OXIDASE-2 gene (35S::AtCKX2) resulted in a reduction in disease incidence and stem diameter. RNA-sequencing analysis of infected MT and 35S::AtCKX2 revealed the activation of cytokinin-responsive marker genes when symptoms were conspicuous. The expression of an Moniliophthora perniciosa tRNA-ISOPENTENYL-TRANSFERASE suggests the production of isopentenyladenine (iP), detected in mycelia grown in vitro. Inoculated MT stems showed higher levels of dihydrozeatin and trans-zeatin but not iP. The application of benzyladenine induced symptoms similar to infection, whereas applying the cytokinin receptor inhibitors LGR-991 and PI55 decreased symptoms. Moniliophthora perniciosa produces iP that might contribute to cytokinin synthesis by the host, which results in vascular and cortex enlargement, axillary shoot outgrowth, reduction in root biomass and an increase in fruit locule number. This strategy may be associated with the manipulation of sink establishment to favour infection by the fungus.


Assuntos
Agaricales , Cacau , Solanum lycopersicum , Citocininas , Solanum lycopersicum/genética , Doenças por Fitoplasmas , Doenças das Plantas
9.
Plant J ; 97(3): 603-615, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30394600

RESUMO

A network of environmental inputs and internal signaling controls plant growth, development and organ elongation. In particular, the growth-promoting hormone gibberellin (GA) has been shown to play a significant role in organ elongation. The use of tomato as a model organism to study elongation presents an opportunity to study the genetic control of internode-specific elongation in a eudicot species with a sympodial growth habit and substantial internodes that can and do respond to external stimuli. To investigate internode elongation, a mutant with an elongated hypocotyl and internodes but wild-type petioles was identified through a forward genetic screen. In addition to stem-specific elongation, this mutant, named tomato internode elongated -1 (tie-1) is more sensitive to the GA biosynthetic inhibitor paclobutrazol and has altered levels of intermediate and bioactive GAs compared with wild-type plants. The mutation responsible for the internode elongation phenotype was mapped to GA2oxidase 7, a class III GA 2-oxidase in the GA biosynthetic pathway, through a bulked segregant analysis and bioinformatic pipeline, and confirmed by transgenic complementation. Furthermore, bacterially expressed recombinant TIE protein was shown to have bona fide GA 2-oxidase activity. These results define a critical role for this gene in internode elongation and are significant because they further the understanding of the role of GA biosynthetic genes in organ-specific elongation.


Assuntos
Vias Biossintéticas , Giberelinas/metabolismo , Oxigenases de Função Mista/metabolismo , Solanum lycopersicum/enzimologia , Solanum lycopersicum/genética , Oxigenases de Função Mista/genética , Fenótipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
10.
Plant Physiol ; 180(3): 1549-1563, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31097676

RESUMO

Regulation of flowering by endogenous and environmental signals ensures that reproduction occurs under optimal conditions to maximize reproductive success. Involvement of the growth regulator gibberellin (GA) in the control of flowering by environmental cues varies among species. Arabis alpina Pajares, a model perennial member of the Brassicaceae, only undergoes floral induction during vernalization, allowing definition of the role of GA specifically in this process. The transcription factor PERPETUAL FLOWERING1 (PEP1) represses flowering until its mRNA levels are reduced during vernalization. Genome-wide analyses of PEP1 targets identified genes involved in GA metabolism and signaling, and many of the binding sites in these genes were specific to the A. alpina lineage. Here, we show that the pep1 mutant exhibits an elongated-stem phenotype, similar to that caused by treatment with exogenous GA, consistent with PEP1 repressing GA responses. Moreover, in comparison with the wild type, the pep1 mutant contains higher GA4 levels and is more sensitive to GA prior to vernalization. Upon exposure to cold temperatures, GA levels fall to low levels in the pep1 mutant and in wild-type plants, but GA still promotes floral induction and the transcription of floral meristem identity genes during vernalization. Reducing GA levels strongly impairs flowering and inflorescence development in response to short vernalization treatments, but longer treatments overcome the requirement for GA. Thus, GA accelerates the floral transition during vernalization in A. alpina, the down-regulation of PEP1 likely increases GA sensitivity, and GA responses contribute to determining the length of vernalization required for flowering and reproduction.


Assuntos
Arabis/metabolismo , Temperatura Baixa , Flores/metabolismo , Giberelinas/metabolismo , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Arabis/efeitos dos fármacos , Arabis/genética , Flores/efeitos dos fármacos , Flores/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Estudo de Associação Genômica Ampla/métodos , Giberelinas/farmacologia , Meristema/efeitos dos fármacos , Meristema/genética , Meristema/metabolismo , Mutação , Fenótipo , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Proteínas de Plantas/genética , Caules de Planta/efeitos dos fármacos , Caules de Planta/genética , Caules de Planta/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Fatores de Transcrição/genética
11.
New Phytol ; 221(3): 1328-1344, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30238569

RESUMO

Age-regulated microRNA156 (miR156) and targets similarly control the competence to flower in diverse species. By contrast, the diterpene hormone gibberellin (GA) and the microRNA319-regulated TEOSINTE BRANCHED/CYCLOIDEA/PCF (TCP) transcription factors promote flowering in the facultative long-day Arabidopsis thaliana, but suppress it in the day-neutral tomato (Solanum lycopersicum). We combined genetic and molecular studies and described a new interplay between GA and two unrelated miRNA-associated pathways that modulates tomato transition to flowering. Tomato PROCERA/DELLA activity is required to promote flowering along with the miR156-targeted SQUAMOSA PROMOTER BINDING-LIKE (SPL/SBP) transcription factors by activating SINGLE FLOWER TRUSS (SFT) in the leaves and the MADS-Box gene APETALA1(AP1)/MC at the shoot apex. Conversely, miR319-targeted LANCEOLATE represses floral transition by increasing GA concentrations and inactivating SFT in the leaves and AP1/MC at the shoot apex. Importantly, the combination of high GA concentrations/responses with the loss of SPL/SPB function impaired canonical meristem maturation and flower initiation in tomato. Our results reveal a cooperative regulation of tomato floral induction and flower development, integrating age cues (miR156 module) with GA responses and miR319-controlled pathways. Importantly, this study contributes to elucidate the mechanisms underlying the effects of GA in controlling flowering time in a day-neutral species.


Assuntos
Flores/crescimento & desenvolvimento , Giberelinas/metabolismo , MicroRNAs/metabolismo , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/genética , Inflorescência/crescimento & desenvolvimento , Meristema/crescimento & desenvolvimento , MicroRNAs/genética , Modelos Biológicos , Mutação/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
12.
Plant J ; 92(1): 95-109, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28715118

RESUMO

The transition from flowering to fruit production, namely fruit set, is crucial to ensure successful sexual plant reproduction. Although studies have described the importance of hormones (i.e. auxin and gibberellins) in controlling fruit set after pollination and fertilization, the role of microRNA-based regulation during ovary development and fruit set is still poorly understood. Here we show that the microRNA159/GAMYB1 and -2 pathway (the miR159/GAMYB1/2 module) is crucial for tomato ovule development and fruit set. MiR159 and SlGAMYBs were expressed in preanthesis ovaries, mainly in meristematic tissues, including developing ovules. SlMIR159-overexpressing tomato cv. Micro-Tom plants exhibited precocious fruit initiation and obligatory parthenocarpy, without modifying fruit shape. Histological analysis showed abnormal ovule development in such plants, which led to the formation of seedless fruits. SlGAMYB1/2 silencing in SlMIR159-overexpressing plants resulted in misregulation of pathways associated with ovule and female gametophyte development and auxin signalling, including AINTEGUMENTA-like genes and the miR167/SlARF8a module. Similarly to SlMIR159-overexpressing plants, SlGAMYB1 was downregulated in ovaries of parthenocarpic mutants with altered responses to gibberellins and auxin. SlGAMYBs likely contribute to fruit initiation by modulating auxin and gibberellin responses, rather than their levels, during ovule and ovary development. Altogether, our results unveil a novel function for the miR159-targeted SlGAMYBs in regulating an agronomically important trait, namely fruit set.


Assuntos
Regulação da Expressão Gênica de Plantas , MicroRNAs/genética , Reguladores de Crescimento de Plantas/metabolismo , Solanum lycopersicum/genética , Fatores de Transcrição/metabolismo , Regulação para Baixo , Flores/citologia , Flores/genética , Flores/crescimento & desenvolvimento , Frutas/citologia , Frutas/genética , Frutas/crescimento & desenvolvimento , Giberelinas/metabolismo , Ácidos Indolacéticos/metabolismo , Solanum lycopersicum/citologia , Solanum lycopersicum/crescimento & desenvolvimento , Óvulo Vegetal/citologia , Óvulo Vegetal/genética , Óvulo Vegetal/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Polinização , RNA de Plantas/genética , Fatores de Transcrição/genética
13.
BMC Plant Biol ; 13: 129, 2013 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-24020638

RESUMO

BACKGROUND: Three gametoclonal plants of Citrus clementina Hort. ex Tan., cv. Nules, designated ESP, FRA, and ITA (derived from three labs in Spain, France, and Italy, respectively), were selected for cytological and molecular characterization in order to elucidate genomic rearrangements provoked by haploidization. The study included comparisons of their ploidy, homozygosity, genome integrity, and gene dosage, using chromosome counting, flow cytometry, SSR marker genotyping, and array-Comparative Genomic Hybridization (array-CGH). RESULTS: Chromosome counting and flow cytometry revealed that ESP and FRA were haploid, but ITA was tri-haploid. Homozygous patterns, represented by a single peak (allele), were observed among the three plants at almost all SSR loci distributed across the entire diploid donor genome. Those few loci with extra peaks visualized as output from automated sequencing runs, generally low or ambiguous, might result from amplicons of paralogous members at the locus, non-specific sites, or unexpected recombinant alleles. No new alleles were found, suggesting the genomes remained stable and intact during gametogenesis and regeneration. The integrity of the haploid genome also was supported by array-CGH studies, in which genomic profiles were comparable to the diploid control. CONCLUSIONS: The presence of few gene hybridization abnormalities, corroborated by gene dosage measurements, were hypothetically due to the segregation of hemizygous alleles and minor genomic rearrangements occurring during the haploidization procedure. In conclusion, these plants that are valuable genetic and breeding materials contain completely homozygous and essentially intact genomes.


Assuntos
Citrus/genética , Genoma de Planta/genética , Alelos , Haploidia , Homozigoto
14.
Plant Physiol ; 160(3): 1581-96, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22942390

RESUMO

procera (pro) is a tall tomato (Solanum lycopersicum) mutant carrying a point mutation in the GRAS region of the gene encoding SlDELLA, a repressor in the gibberellin (GA) signaling pathway. Consistent with the SlDELLA loss of function, pro plants display a GA-constitutive response phenotype, mimicking wild-type plants treated with GA3. The ovaries from both nonemasculated and emasculated pro flowers had very strong parthenocarpic capacity, associated with enhanced growth of preanthesis ovaries due to more and larger cells. pro parthenocarpy is facultative because seeded fruits were obtained by manual pollination. Most pro pistils had exserted stigmas, thus preventing self-pollination, similar to wild-type pistils treated with GA3 or auxins. However, Style2.1, a gene responsible for long styles in noncultivated tomato, may not control the enhanced style elongation of pro pistils, because its expression was not higher in pro styles and did not increase upon GA3 application. Interestingly, a high percentage of pro flowers had meristic alterations, with one additional petal, sepal, stamen, and carpel at each of the four whorls, respectively, thus unveiling a role of SlDELLA in flower organ development. Microarray analysis showed significant changes in the transcriptome of preanthesis pro ovaries compared with the wild type, indicating that the molecular mechanism underlying the parthenocarpic capacity of pro is complex and that it is mainly associated with changes in the expression of genes involved in GA and auxin pathways. Interestingly, it was found that GA activity modulates the expression of cell division and expansion genes and an auxin signaling gene (tomato AUXIN RESPONSE FACTOR7) during fruit-set.


Assuntos
Flores/anatomia & histologia , Frutas/crescimento & desenvolvimento , Ácidos Indolacéticos/metabolismo , Mutação/genética , Proteínas de Plantas/metabolismo , Transdução de Sinais , Solanum lycopersicum/crescimento & desenvolvimento , Divisão Celular/efeitos dos fármacos , Divisão Celular/genética , Proliferação de Células/efeitos dos fármacos , Flores/citologia , Flores/efeitos dos fármacos , Flores/genética , Frutas/citologia , Frutas/efeitos dos fármacos , Frutas/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas/genética , Giberelinas/farmacologia , Solanum lycopersicum/citologia , Solanum lycopersicum/efeitos dos fármacos , Solanum lycopersicum/genética , Modelos Biológicos , Partenogênese/efeitos dos fármacos , Partenogênese/genética , Fenótipo , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Polinização/efeitos dos fármacos , Polinização/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Fatores de Tempo , Transcriptoma/genética , Triazóis/farmacologia
15.
Plant Physiol ; 160(2): 837-45, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22911627

RESUMO

The biosynthesis of gibberellic acid (GA(3)) by the fungus Fusarium fujikuroi is catalyzed by seven enzymes encoded in a gene cluster. While four of these enzymes are characterized as cytochrome P450 monooxygenases, the nature of a fifth oxidase, GA(4) desaturase (DES), is unknown. DES converts GA(4) to GA(7) by the formation of a carbon-1,2 double bond in the penultimate step of the pathway. Here, we show by expression of the des complementary DNA in Escherichia coli that DES has the characteristics of a 2-oxoglutarate-dependent dioxygenase. Although it has low amino acid sequence homology with known 2-oxoglutarate-dependent dioxygenases, putative iron- and 2-oxoglutarate-binding residues, typical of such enzymes, are apparent in its primary sequence. A survey of sequence databases revealed that homologs of DES are widespread in the ascomycetes, although in most cases the homologs must participate in non-gibberellin (GA) pathways. Expression of des from the cauliflower mosaic virus 35S promoter in the plant species Solanum nigrum, Solanum dulcamara, and Nicotiana sylvestris resulted in substantial growth stimulation, with a 3-fold increase in height in S. dulcamara compared with controls. In S. nigrum, the height increase was accompanied by a 20-fold higher concentration of GA(3) in the growing shoots than in controls, although GA(1) content was reduced. Expression of des was also shown to partially restore growth in plants dwarfed by ectopic expression of a GA 2-oxidase (GA-deactivating) gene, consistent with GA(3) being protected from 2-oxidation. Thus, des has the potential to enable substantial growth increases, with practical implications, for example, in biomass production.


Assuntos
Proteínas Fúngicas/isolamento & purificação , Fusarium/enzimologia , Oxigenases de Função Mista/isolamento & purificação , Nicotiana/crescimento & desenvolvimento , Solanum/crescimento & desenvolvimento , Agrobacterium tumefaciens/genética , Agrobacterium tumefaciens/metabolismo , Caulimovirus/enzimologia , Caulimovirus/genética , Caulimovirus/metabolismo , Cromatografia Líquida de Alta Pressão , Clonagem Molecular , DNA Complementar/genética , DNA Complementar/metabolismo , Bases de Dados Genéticas , Ensaios Enzimáticos/métodos , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fusarium/genética , Vetores Genéticos , Giberelinas/biossíntese , Giberelinas/genética , Giberelinas/metabolismo , Ácidos Cetoglutáricos/metabolismo , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Dados de Sequência Molecular , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , Regiões Promotoras Genéticas , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Solanum/genética , Solanum/metabolismo , Especificidade por Substrato , Nicotiana/genética , Nicotiana/metabolismo
16.
Plants (Basel) ; 12(13)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37447053

RESUMO

Fruit development involves exocarp color evolution. However, signals that control this process are still elusive. Differences between dark-red and bicolored sweet cherry cultivars rely on MYB factor gene mutations. Color evolution in bicolored fruits only occurs on the face receiving sunlight, suggesting the perception or response to color-inducing signals is affected. These color differences may be related to synthesis, perception or response to abscisic acid (ABA), a phytohormone responsible for non-climacteric fruit coloring. This work aimed to determine the involvement of ABA in the coloring process of color-contrasting varieties. Several phenolic accumulation patterns differed between bicolored 'Royal Rainier' and dark-red 'Lapins'. Transcript abundance of ABA biosynthetic genes (PavPSY, PavZEP and PavNCED1) decreased dramatically from the Pink to Red stage in 'Royal Rainier' but increased in 'Lapins', which correlated with a higher ABA content in this dark-red cultivar. Transcripts coding for ABA signaling (PavPP2Cs, PavSnRKs and PavMYB44.1) were almost undetectable at the Red stage in 'Royal Rainier'. Field trials revealed that 'Royal Rainier' color development was insensitive to exogenous ABA, whereas it increased in 'Lapins'. Furthermore, ABA treatment only increased transcript levels of signaling genes in 'Lapins'. Further studies may address if the ABA pathway is attenuated in bicolor cultivars.

17.
Nat Plants ; 9(5): 785-802, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37024660

RESUMO

The plant hormone gibberellin (GA) regulates multiple developmental processes. It accumulates in the root elongating endodermis, but how it moves into this cell file and the significance of this accumulation are unclear. Here we identify three NITRATE TRANSPORTER1/PEPTIDE TRANSPORTER (NPF) transporters required for GA and abscisic acid (ABA) translocation. We demonstrate that NPF2.14 is a subcellular GA/ABA transporter, presumably the first to be identified in plants, facilitating GA and ABA accumulation in the root endodermis to regulate suberization. Further, NPF2.12 and NPF2.13, closely related proteins, are plasma membrane-localized GA and ABA importers that facilitate shoot-to-root GA12 translocation, regulating endodermal hormone accumulation. This work reveals that GA is required for root suberization and that GA and ABA can act non-antagonistically. We demonstrate how the clade of transporters mediates hormone flow with cell-file-specific vacuolar storage at the phloem unloading zone, and slow release of hormone to induce suberin formation in the maturation zone.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Ácido Abscísico/metabolismo , Giberelinas/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Arabidopsis/metabolismo , Transportadores de Nitrato , Hormônios/metabolismo , Regulação da Expressão Gênica de Plantas
18.
J Exp Bot ; 63(16): 5803-13, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22945942

RESUMO

Fruit-set and growth in tomato depend on the action of gibberellins (GAs). To evaluate the role of the GA biosynthetic enzyme GA 20-oxidase (GA20ox) in that process, the citrus gene CcGA20ox1 was overexpressed in tomato (Solanum lycopersicum L.) cv Micro-Tom. The transformed plants were taller, had non-serrated leaves, and some flowers displayed a protruding stigma due to a longer style, thus preventing self-pollination, similar to GA(3)-treated plants. Flowering was delayed compared with wild-type (WT) plants. Both yield and number of fruits per plant, some of them seedless, were higher in the transgenic plants. The Brix index value of fruit juice was also higher due to elevated citric acid content, but not glucose or fructose content. When emasculated, 14-30% of ovaries from transgenic flowers developed parthenocarpically, whereas no parthenocarpy was found in emasculated WT flowers. The presence of early-13-hydroxylation and non-13-hydroxylation GA pathways was demonstrated in the shoot and fruit of Micro-Tom, as well as in two tall tomato cultivars (Ailsa Craig and UC-82). The transgenic plants had altered GA profiles containing higher concentrations of GA(4), from the non-13-hydroxylation pathway, which is generally a minor active GA in tomato. The effect of GA(4) application in enhancing stem growth and parthenocarpic fruit development was proportional to dose, with the same activity as GA(1). The results support the contention that GA20ox overexpression diverts GA metabolism from the early-13-hydroxylation pathway to the non-13-hydroxylation pathway. This led to enhanced GA(4) synthesis and higher yield, although the increase in GA(4) content in the ovary was not sufficient to induce full parthenocarpy.


Assuntos
Citrus/enzimologia , Frutas/crescimento & desenvolvimento , Giberelinas/biossíntese , Oxigenases de Função Mista/genética , Plantas Geneticamente Modificadas/metabolismo , Solanum lycopersicum/metabolismo , Vias Biossintéticas , Citrus/genética , Frutas/genética , Frutas/metabolismo , Expressão Gênica , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/genética , Solanum lycopersicum/crescimento & desenvolvimento , Oxigenases de Função Mista/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento
19.
Plant Physiol ; 153(2): 851-62, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20388661

RESUMO

Fruit-set in tomato (Solanum lycopersicum) depends on gibberellins and auxins (GAs). Here, we show, using the cv MicroTom, that application of N-1-naphthylphthalamic acid (NPA; an inhibitor of auxin transport) to unpollinated ovaries induced parthenocarpic fruit-set, associated with an increase of indole-3-acetic acid (IAA) content, and that this effect was negated by paclobutrazol (an inhibitor of GA biosynthesis). NPA-induced ovaries contained higher content of GA(1) (an active GA) and transcripts of GA biosynthetic genes (SlCPS, SlGA20ox1, and -2). Interestingly, application of NPA to pollinated ovaries prevented their growth, potentially due to supraoptimal IAA accumulation. Plant decapitation and inhibition of auxin transport by NPA from the apical shoot also induced parthenocarpic fruit growth of unpollinated ovaries. Application of IAA to the severed stump negated the plant decapitation effect, indicating that the apical shoot prevents unpollinated ovary growth through IAA transport. Parthenocarpic fruit growth induced by plant decapitation was associated with high levels of GA(1) and was counteracted by paclobutrazol treatment. Plant decapitation also produced changes in transcript levels of genes encoding enzymes of GA biosynthesis (SlCPS and SlGA20ox1) in the ovary, quite similar to those found in NPA-induced fruits. All these results suggest that auxin can have opposing effects on fruit-set, either inducing (when accumulated in the ovary) or repressing (when transported from the apical shoot) that process, and that GAs act as mediators in both cases. The effect of NPA application and decapitation on fruit-set induction was also observed in MicroTom lines bearing introgressed DWARF and SELF-PRUNING wild-type alleles.


Assuntos
Flores/metabolismo , Frutas/crescimento & desenvolvimento , Giberelinas/metabolismo , Ácidos Indolacéticos/metabolismo , Solanum lycopersicum/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Dados de Sequência Molecular , Ftalimidas/farmacologia , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Polinização , RNA de Plantas/genética
20.
Sci Rep ; 11(1): 21754, 2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34741092

RESUMO

The wound inflicted during grafting of watermelon seedlings requires rapid and sufficient vascular development which is affected by light quality. Our objective was to investigate the effect of light spectra emitted by light-emitting diodes (LEDs) during healing of grafted watermelon (Citrullus lanatus) seedlings on their vascular development, physiological and phytohormonal profile, and root architecture. Three LEDs emitting red (R), blue (B), and RB with 12% blue (12B) were tested in a healing chamber. During the first three days, the photosynthetic apparatus portrayed by PIABS, φP0, ψE0, and ΔVIP was less damaged and faster repaired in B-treated seedlings. B and 12B promoted vascular reconnection and root development (length, surface area and volume). This was the result of signaling cascade between phytohormones such as indole-3-acetic acid and others. After vascular reconnection the seedlings switched lights for 3 more days and the picture was reversed. Seedlings treated with B for the first 3 days and R for days 4 to 6 had better photosynthetic characteristics, root system development, morphological, shoot and root biomass, and quality (i.e. Dickson's quality index) characteristics. We concluded that blue light is important during the first 3 days of healing, while the presence of red is necessary after vascular reconnection.


Assuntos
Citrullus/efeitos da radiação , Produção Agrícola/métodos , Feixe Vascular de Plantas/crescimento & desenvolvimento , Plântula/efeitos da radiação , Citrullus/crescimento & desenvolvimento , Plântula/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa