RESUMO
Clostridioides difficile is an anaerobic gastrointestinal pathogen that spreads through the environment as dormant spores. To survive, replicate, and sporulate in the host intestine, C. difficile must adapt to a variety of conditions in its environment, including changes in pH, the availability of metabolites, host immune factors, and a diverse array of other species. Prior studies showed that changes in intestinal conditions, such as pH, can affect C. difficile toxin production, spore formation, and cell survival. However, little is understood about the specific genes and pathways that facilitate environmental adaptation and lead to changes in C. difficile cell outcomes. In this study, we investigated two genes, CD2505 and CD2506, that are differentially regulated by pH to determine if they impact C. difficile growth and sporulation. Using deletion mutants, we examined the effects of both genes (herein smrR and smrT) on sporulation frequency, toxin production, and antimicrobial resistance. We determined that SmrR is a repressor of smrRT that responds to pH and suppresses sporulation and toxin production through regulation of the SmrT transporter. Further, we showed that SmrT confers resistance to erythromycin and lincomycin, establishing a connection between the regulation of sporulation and antimicrobial resistance.IMPORTANCEClostridioides difficile is a mammalian pathogen that colonizes the large intestine and produces toxins that lead to severe diarrheal disease. C. difficile is a major threat to public health due to its intrinsic resistance to antimicrobials and its ability to form dormant spores that are easily spread from host to host. In this study, we examined the contribution of two genes, smrR and smrT, on sporulation, toxin production, and antimicrobial resistance. Our results indicate that SmrR represses smrT expression, while production of SmrT increases spore and toxin production, as well as resistance to antibiotics.
Assuntos
Antibacterianos , Clostridioides difficile , Animais , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Esporos Bacterianos , Regulação Bacteriana da Expressão Gênica , Farmacorresistência Bacteriana , Concentração de Íons de Hidrogênio , Proteínas de Bactérias/metabolismo , MamíferosRESUMO
Clostridioides difficile is a leading cause of antibiotic-associated diarrheal disease. C. difficile colonization, growth, and toxin production in the intestine is strongly associated with its ability to use amino acids to generate energy, but little is known about the impact of specific amino acids on C. difficile pathogenesis. The amino acid glycine is enriched in the dysbiotic gut and is suspected to contribute to C. difficile infection. We hypothesized that the use of glycine as an energy source contributes to colonization of the intestine and pathogenesis of C. difficile. To test this hypothesis, we deleted the glycine reductase (GR) genes grdAB, rendering C. difficile unable to ferment glycine, and investigated the impact on growth and pathogenesis. Our data show that the grd pathway promotes growth, toxin production, and sporulation. Glycine fermentation also had a significant impact on toxin production and pathogenesis of C. difficile in the hamster model of disease. Furthermore, we determined that the grd locus is regulated by host cathelicidin (LL-37) and the cathelicidin-responsive regulator, ClnR, indicating that the host peptide signals to control glycine catabolism. The induction of glycine fermentation by LL-37 demonstrates a direct link between the host immune response and the bacterial reactions of toxin production and spore formation.
Assuntos
Clostridioides difficile , Cricetinae , Animais , Clostridioides difficile/metabolismo , Catelicidinas , Fermentação , Virulência , Aminoácidos/metabolismo , Glicina/metabolismo , Proteínas de Bactérias/genética , Esporos/metabolismoRESUMO
Clostridioides difficile is an anaerobic gastrointestinal pathogen that spreads through the environment as dormant spores. To survive, replicate, and sporulate in the host intestine, C. difficile must adapt to a variety of conditions in its environment, including changes in pH, the availability of metabolites, host immune factors, and a diverse array of other species. Prior studies showed that changes in intestinal conditions, such as pH, can affect C. difficile toxin production, spore formation, and cell survival. However, little is understood about the specific genes and pathways that facilitate environmental adaptation and lead to changes in C. difficile cell outcomes. In this study, we investigated two genes, CD2505 and CD2506, that are differentially regulated by pH to determine if they impact C. difficile growth and sporulation. Using deletion mutants, we examined the effects of both genes (herein smrR and smrT ) on sporulation frequency, toxin production, and antimicrobial resistance. We determined that SmrR is a repressor of smrRT that responds to pH and suppresses sporulation and toxin production through regulation of the SmrT transporter. Further, we showed that SmrT confers resistance to erythromycin and lincomycin, establishing a connection between the regulation of sporulation and antimicrobial resistance. IMPORTANCE: C. difficile is a mammalian pathogen that colonizes the large intestine and produces toxins that lead to severe diarrheal disease. C. difficile is a major threat to public health due to its intrinsic resistance to antimicrobials and its ability to form dormant spores that are easily spread from host to host. In this study, we examined the contribution of two genes, smrR and smrT on sporulation, toxin production, and antimicrobial resistance. Our results indicate that SmrR represses smrT expression, while production of SmrT increases spore and toxin production, as well as resistance to antibiotics.