Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Nitric Oxide ; 147: 42-50, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38631610

RESUMO

Nitric oxide (NO) donating drugs such as organic nitrates have been used to treat cardiovascular diseases for more than a century. These donors primarily produce NO systemically. It is however sometimes desirable to control the amount, location, and time of NO delivery. We present the design of a novel pH-sensitive NO release system that is achieved by the synthesis of dipeptide diphenylalanine (FF) and graphene oxide (GO) co-assembled hybrid nanosheets (termed as FF@GO) through weak molecular interactions. These hybrid nanosheets were characterised by using X-ray diffraction, Raman spectroscopy, Fourier transform infrared spectroscopy, zeta potential measurements, X-ray photoelectron spectroscopy, scanning and transmission electron microscopies. The weak molecular interactions, which include electrostatic, hydrogen bonding and π-π stacking, are pH sensitive due to the presence of carboxylic acid and amine functionalities on GO and the dipeptide building blocks. Herein, we demonstrate that this formulation can be loaded with NO gas with the dipeptide acting as an arresting agent to inhibit NO burst release at neutral pH; however, at acidic pH it is capable of releasing NO at the rate of up to 0.6 µM per minute, comparable to the amount of NO produced by healthy endothelium. In conclusion, the innovative conjugation of dipeptide with graphene can store and release NO gas under physiologically relevant concentrations in a pH-responsive manner. pH responsive NO-releasing organic-inorganic nanohybrids may prove useful for the treatment of cardiovascular diseases and other pathologies.


Assuntos
Grafite , Nanoestruturas , Óxido Nítrico , Grafite/química , Concentração de Íons de Hidrogênio , Óxido Nítrico/química , Óxido Nítrico/metabolismo , Nanoestruturas/química , Humanos , Dipeptídeos/química , Fenilalanina/química , Fenilalanina/análogos & derivados
2.
Molecules ; 28(15)2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37570666

RESUMO

Organic and inorganic nanoparticles (NPs) have attracted significant attention due to their unique physico-chemical properties, which have paved the way for their application in numerous fields including diagnostics and therapy. Recently, hybrid nanomaterials consisting of organic nanocompartments (e.g., liposomes, micelles, poly (lactic-co-glycolic acid) NPs, dendrimers, or chitosan NPs) encapsulating inorganic NPs (quantum dots, or NPs made of gold, silver, silica, or magnetic materials) have been researched for usage in vivo as drug-delivery or theranostic agents. These classes of hybrid multi-particulate systems can enable or facilitate the use of inorganic NPs in biomedical applications. Notably, integration of inorganic NPs within organic nanocompartments results in improved NP stability, enhanced bioavailability, and reduced systemic toxicity. Moreover, these hybrid nanomaterials allow synergistic interactions between organic and inorganic NPs, leading to further improvements in therapeutic efficacy. Furthermore, these platforms can also serve as multifunctional agents capable of advanced bioimaging and targeted delivery of therapeutic agents, with great potential for clinical applications. By considering these advancements in the field of nanomedicine, this review aims to provide an overview of recent developments in the use of hybrid nanoparticulate systems that consist of organic nanocompartments encapsulating inorganic NPs for applications in drug delivery, bioimaging, and theranostics.


Assuntos
Nanopartículas , Nanoestruturas , Sistemas de Liberação de Medicamentos/métodos , Nanopartículas/química , Lipossomos/química , Nanomedicina/métodos
3.
J Acoust Soc Am ; 149(6): 4228, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34241474

RESUMO

A portable device for the rapid concentration of Bacillus subtilis var niger spores, also known as Bacillus globigii (BG), using a thin-reflector acoustofluidic configuration is described. BG spores form an important laboratory analog for the Bacillus anthracis spores, a serious health and bioterrorism risk. Existing systems for spore detection have limitations on detection time and detection that will benefit from the combination with this technology. Thin-reflector acoustofluidic devices can be cheaply and robustly manufactured and provide a more reliable acoustic force than previously explored quarter-wave resonator systems. The system uses the acoustic forces to drive spores carried in sample flows of 30 ml/h toward an antibody functionalized surface, which captures and immobilizes them. In this implementation, spores were fluorescently labeled and imaged. Detection at concentrations of 100 CFU/ml were demonstrated in an assay time of 10 min with 60% capture. We envisage future systems to incorporate more advanced detection of the concentrated spores, leading to rapid, sensitive detection in the presence of significant noise.


Assuntos
Bacillus anthracis , Bacillus , Acústica , Esporos Bacterianos
4.
J Acoust Soc Am ; 150(2): 1577, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34470259

RESUMO

Surfactant-coated gas microbubbles are widely used as contrast agents in ultrasound imaging and increasingly in therapeutic applications. The response of microbubbles to ultrasound can be strongly influenced by their size and coating properties, and hence the production method. Ultrasonic emulsification (sonication) is the most commonly employed method and can generate high concentrations of microbubbles rapidly, but with a broad size distribution, and there is a risk of contamination and/or degradation of sensitive components. Microfluidic devices provide excellent control over microbubble size, but are often challenging or costly to manufacture, offer low production rates (<106s-1), and are prone to clogging. In this study, a hybrid sonication-microfluidic or "sonofluidic" device was developed. Bubbles of ∼180 µm diameter were produced rapidly in a T-junction and subsequently exposed to ultrasound (71-73 kHz) within a microchannel, generating microbubbles (mean diameter: 1-2 µm) at a rate of >108s-1 using a single device. Microbubbles were prepared using either the sonofluidic device or conventional sonication, and their size, concentration, and stability were comparable. The mean diameter, concentration, and stability were found to be comparable between techniques, but the microbubbles produced by the sonofluidic device were all <5 µm in diameter and thus did not require any post-production fractionation.


Assuntos
Dispositivos Lab-On-A-Chip , Microbolhas , Meios de Contraste , Microfluídica , Ultrassonografia
5.
J Cell Sci ; 131(5)2018 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-29361543

RESUMO

Development of remote stimulation techniques for neuronal tissues represents a challenging goal. Among the potential methods, mechanical stimuli are the most promising vectors to convey information non-invasively into intact brain tissue. In this context, selective mechano-sensitization of neuronal circuits would pave the way to develop a new cell-type-specific stimulation approach. We report here, for the first time, the development and characterization of mechano-sensitized neuronal networks through the heterologous expression of an engineered bacterial large-conductance mechanosensitive ion channel (MscL). The neuronal functional expression of the MscL was validated through patch-clamp recordings upon application of calibrated suction pressures. Moreover, we verified the effective development of in-vitro neuronal networks expressing the engineered MscL in terms of cell survival, number of synaptic puncta and spontaneous network activity. The pure mechanosensitivity of the engineered MscL, with its wide genetic modification library, may represent a versatile tool to further develop a mechano-genetic approach.This article has an associated First Person interview with the first author of the paper.


Assuntos
Proteínas de Escherichia coli/genética , Canais Iônicos/genética , Mecanotransdução Celular/genética , Plasticidade Neuronal/genética , Neurônios/metabolismo , Animais , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Sobrevivência Celular/genética , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica/genética , Ativação do Canal Iônico/genética , Rede Nervosa/crescimento & desenvolvimento , Rede Nervosa/metabolismo , Técnicas de Patch-Clamp , Cultura Primária de Células , Engenharia de Proteínas/métodos , Ratos , Transfecção
6.
Langmuir ; 36(23): 6388-6398, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32407094

RESUMO

Studies on the bioeffects produced by ultrasound and microbubbles have focused primarily on transport in bulk tissue, drug uptake by individual cells, and disruption of biological membranes. Relatively little is known about the physical perturbations and fluid dynamics of the intracellular environment during ultrasound exposure. To investigate this, a custom acoustofluidic chamber was designed to expose model cells, in the form of giant unilamellar vesicles, to ultrasound and microbubbles. The motion of fluorescent tracer beads within the lumen of the vesicles was tracked during exposure to laminar flow (∼1 mm s-1), ultrasound (1 MHz, ∼150 kPa, 60 s), and phospholipid-coated microbubbles, alone and in combination. To decouple the effects of fluid flow and ultrasound exposure, the system was also modeled numerically by using boundary-driven streaming field equations. Both the experimental and numerical results indicate that all conditions produced internal streaming within the vesicles. Ultrasound alone produced an average bead velocity of 6.5 ± 1.3 µm/s, which increased to 8.5 ± 3.8 µm/s in the presence of microbubbles compared to 12 ± 0.12 µm/s under laminar flow. Further research on intracellular forces in mammalian cells and the associated biological effects in vitro and in vivo are required to fully determine the implications for safety and/or therapy.

7.
Langmuir ; 36(2): 609-617, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31855435

RESUMO

Microbubbles stabilized by an outer lipid shell have been studied extensively for both diagnostic and therapeutic applications. The shell composition can significantly influence microbubble behavior, but performing quantitative measurements of shell properties is challenging. The aim of this study is to investigate the use of spectral imaging to characterize the surface properties of a range of microbubble formulations representing both commercial and research agents. A lipophilic dye, C-laurdan, whose fluorescence emission varies according to the properties of the local environment, was used to compare the degree and uniformity of the lipid order in the microbubble shell, and these measurements were compared with the acoustic response and stability of the different formulations. Spectral imaging was found to be suitable for performing rapid and hence relatively high throughput measurements of microbubble surface properties. Interestingly, despite significant differences in lipid molecule size and charge, all of the different formulations exhibited highly ordered lipid shells. Measurements of liposomes with the same composition and the debris generated by destroying lipid microbubbles with ultrasound (US) showed that these exhibited a lower and more varied lipid order than intact microbubbles. This suggests that the high lipid order of microbubbles is due primarily to compression of the shell as a result of surface tension and is only minimally affected by composition. This also explains the similarity in acoustic response observed between the formulations, because microbubble dynamics are determined by the diameter and shell viscoelastic properties that are themselves a function of the lipid order. Within each population, there was considerable variability in the lipid order and response between individual microbubbles, suggesting the need for improved manufacturing techniques. In addition, the difference in the lipid order between the shell and lipid debris may be important for therapeutic applications in which shedding of the shell material is exploited, for example, drug delivery.

8.
Langmuir ; 35(31): 10014-10024, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-30485112

RESUMO

Phospholipid coated microbubbles are currently in widespread clinical use as ultrasound contrast agents and under investigation for therapeutic applications. Previous studies have demonstrated the importance of the coating nanostructure in determining microbubble stability and its dependence upon both composition and processing method. While the influence of different phospholipids has been widely investigated, the role of other constituents such as emulsifiers has received comparatively little attention. Herein, we present an examination of the impact of polyethylene glycol (PEG) derivatives upon microbubble structure and properties. We present data using both pegylated phospholipids and a fluorescent PEG-40-stearate analogue synthesized in-house to directly observe its distribution in the microbubble coating. We examined microbubbles of clinically relevant sizes, investigating both their surface properties and population size distribution and stability. Domain formation was observed only on the surface of larger microbubbles, which were found to contain a higher concentration of PEG-40-stearate. Lipid analogue dyes were also found to influence domain formation compared with PEG-40-stearate alone. "Squeezing out" of PEG-40-stearate was not observed from any of the microbubble sizes investigated. At ambient temperature, microbubbles formulated with DSPE-PEG(2000) were found to be more stable than those containing PEG-40-stearate. At 37 °C, however, the stability in serum was found to be the same for both formulations, and no difference in acoustic backscatter was detected. This could potentially reduce the cost of PEGylated microbubbles and facilitate simpler attachment of targeting or therapeutic species. However, whether PEG-40-stearate sufficiently shields microbubbles to inhibit physiological clearance mechanisms still requires investigation.

9.
Curr Urol Rep ; 19(5): 35, 2018 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-29637309

RESUMO

PURPOSE OF REVIEW: There are three technological parameters that play a key role on the performance of an ideal stent. These are its material, design and surface coating. This article highlights some fundamental developments that took place in these three areas of stent's technology, in order to contribute to the identification of an ideal stent. RECENT FINDINGS: In addition to technological developments concerning stent's material, design and surface coating, the flow dynamic performance of stents has recently attracted increasing attention. Notably, it has been postulated that the local flow field in a stent is correlated with the deposition of crystals and microorganisms. These findings could potentially revolutionise future stent's designs, and complement developments made on materials and coatings. The most relevant changes in materials, designs and surface coatings of ureteric stents are reviewed in this article. These are described in the context of a specific cause of stent's failure they aim to address, with a particular focus on encrustation and biofilm formation.


Assuntos
Desenho de Equipamento , Stents , Biofilmes , Humanos , Falha de Prótese , Stents/efeitos adversos , Ureter
10.
BMC Bioinformatics ; 18(1): 254, 2017 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-28494801

RESUMO

BACKGROUND: Spectral imaging with polarity-sensitive fluorescent probes enables the quantification of cell and model membrane physical properties, including local hydration, fluidity, and lateral lipid packing, usually characterized by the generalized polarization (GP) parameter. With the development of commercial microscopes equipped with spectral detectors, spectral imaging has become a convenient and powerful technique for measuring GP and other membrane properties. The existing tools for spectral image processing, however, are insufficient for processing the large data sets afforded by this technological advancement, and are unsuitable for processing images acquired with rapidly internalized fluorescent probes. RESULTS: Here we present a MATLAB spectral imaging toolbox with the aim of overcoming these limitations. In addition to common operations, such as the calculation of distributions of GP values, generation of pseudo-colored GP maps, and spectral analysis, a key highlight of this tool is reliable membrane segmentation for probes that are rapidly internalized. Furthermore, handling for hyperstacks, 3D reconstruction and batch processing facilitates analysis of data sets generated by time series, z-stack, and area scan microscope operations. Finally, the object size distribution is determined, which can provide insight into the mechanisms underlying changes in membrane properties and is desirable for e.g. studies involving model membranes and surfactant coated particles. Analysis is demonstrated for cell membranes, cell-derived vesicles, model membranes, and microbubbles with environmentally-sensitive probes Laurdan, carboxyl-modified Laurdan (C-Laurdan), Di-4-ANEPPDHQ, and Di-4-AN(F)EPPTEA (FE), for quantification of the local lateral density of lipids or lipid packing. CONCLUSIONS: The Spectral Imaging Toolbox is a powerful tool for the segmentation and processing of large spectral imaging datasets with a reliable method for membrane segmentation and no ability in programming required. The Spectral Imaging Toolbox can be downloaded from https://uk.mathworks.com/matlabcentral/fileexchange/62617-spectral-imaging-toolbox .


Assuntos
Membrana Celular/química , Processamento de Imagem Assistida por Computador/métodos , Lipídeos de Membrana/química , Espectrometria de Fluorescência/métodos , 2-Naftilamina/análogos & derivados , 2-Naftilamina/química , Células A549 , Corantes Fluorescentes/química , Humanos , Lauratos/química , Microbolhas , Microscopia Confocal , Compostos de Piridínio/química
11.
Biomed Microdevices ; 18(1): 4, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26747434

RESUMO

We describe a cost-effective and simple method to fabricate PDMS-based microfluidic devices by combining micromilling with replica moulding technology. It relies on the following steps: (i) microchannels are milled in a block of acrylic; (ii) low-cost epoxy adhesive resin is poured over the milled acrylic block and allowed to cure; (iii) the solidified resin layer is peeled off the acrylic block and used as a mould for transferring the microchannel architecture onto a PDMS layer; finally (iv) the PDMS layer is plasma bonded to a glass surface. With this method, microscale architectures can be fabricated without the need for advanced technological equipment or laborious and time-consuming intermediate procedures. In this manuscript, we describe and validate the microfabrication procedure, and we illustrate its applicability to emulsion and microbubble production.


Assuntos
Dimetilpolisiloxanos/química , Dispositivos Lab-On-A-Chip , Nylons/química
12.
J Mater Sci Mater Med ; 26(11): 258, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26449448

RESUMO

We have recently reported on the development of a biomimetic vein model to measure the performance of sclerosing foams. In this study we employed the model to compare the commercially-available Varithena(®) (polidocanol injectable foam) 1% varicose vein treatment (referred to as polidocanol endovenous microfoam, or PEM) with physician compounded foams (PCFs) made using different foam generation methods (Double Syringe System and Tessari methods) and different foam formulations [liquid to gas ratios of 1:3 or 1:7; gas mixtures composed of 100% CO2, various CO2:O2 mixtures and room air (RA)]. PCFs produced using the DSS method had longer dwell times (DTs) (range 0.54-2.21 s/cm in the 4 mm diameter vein model) than those of the corresponding PCFs produced by the Tessari technique (range 0.29-0.94 s/cm). PEM had the longest DT indicating the best cohesive stability of any of the foams produced (2.92 s/cm). Other biomimetic model variables investigated included effect of vessel size, delayed injection and rate of plug formation (injection speed). When comparing the 4 and 10 mm vessel diameters, the DTs seen in the 10 mm vessel were higher than those observed for the 4 mm vessel, as the vein angle had been reduced to 5° to allow for foam plug formation. PCF foam performance was in the order RA > CO2:O2 (35:65) ≅ CO2:O2 (65:35) > CO2; PEM had a longer DT than all PCFs (22.10 s/cm) except that for RA made by DSS which was similar but more variable. The effect of delayed injection was also investigated and the DT for PEM remained the longest of all foams with the lowest percentage deviation with respect to the mean values, indicating a consistent foam performance. When considering rate of plug formation, PEM consistently produced the longest DTs and this was possible even at low plug expansion rates (mean 29.5 mm/s, minimum 20.9 mm/s). The developed vein model has therefore demonstrated that PEM consistently displays higher foam stability and cohesiveness when compared to PCFs, over a range of clinically-relevant operational variables.


Assuntos
Biomimética , Modelos Biológicos , Veias
13.
Biomaterials ; 305: 122448, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38218121

RESUMO

Gas-loaded nanobubbles have potential as a method of oxygen delivery to increase tumour oxygenation and therapeutically alleviate tumour hypoxia. However, the mechanism(s) whereby oxygen-loaded nanobubbles increase tumour oxygenation are unknown; with their calculated oxygen-carrying capacity being insufficient to explain this effect. Intra-tumoural hypoxia is a prime therapeutic target, at least partly due to hypoxia-dependent stimulation of the formation and function of bone-resorbing osteoclasts which establish metastatic cells in bone. This study aims to investigate potential mechanism(s) of oxygen delivery and in particular the possible use of oxygen-loaded nanobubbles in preventing bone metastasis via effects on osteoclasts. Lecithin-based nanobubbles preferentially interacted with phagocytic cells (monocytes, osteoclasts) via a combination of lipid transfer, clathrin-dependent endocytosis and phagocytosis. This interaction caused general suppression of osteoclast differentiation via inhibition of cell fusion. Additionally, repeat exposure to oxygen-loaded nanobubbles inhibited osteoclast formation to a greater extent than nitrogen-loaded nanobubbles. This gas-dependent effect was driven by differential effects on the fusion of mononuclear precursor cells to form pre-osteoclasts, partly due to elevated potentiation of RANKL-induced ROS by nitrogen-loaded nanobubbles. Our findings suggest that oxygen-loaded nanobubbles could represent a promising therapeutic strategy for cancer therapy; reducing osteoclast formation and therefore bone metastasis via preferential interaction with monocytes/macrophages within the tumour and bone microenvironment, in addition to known effects of directly improving tumour oxygenation.


Assuntos
Neoplasias Ósseas , Reabsorção Óssea , Humanos , Osteoclastos , Oxigênio/farmacologia , Diferenciação Celular , Neoplasias Ósseas/patologia , Hipóxia , Nitrogênio/farmacologia , Ligante RANK , Microambiente Tumoral
14.
J Nanobiotechnology ; 11: 20, 2013 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-23809777

RESUMO

BACKGROUND: In ultrasonic micro-devices, contrast agent micro-bubbles are known to initiate cavitation and streaming local to cells, potentially compromising cell viability. Here we investigate the effects of US alone by omitting contrast agent and monitoring cell viability under moderate-to-extreme ultrasound-related stimuli. RESULTS: Suspended H9c2 cardiac myoblasts were exposed to ultrasonic fields within a glass micro-capillary and their viability monitored under different US-related stimuli. An optimal injection flow rate of 2.6 mL/h was identified in which, high viability was maintained (~95%) and no mechanical stress towards cells was evident. This flow rate also allowed sufficient exposure of cells to US in order to induce bioeffects (~5 sec), whilst providing economical sample collection and processing times. Although the transducer temperature increased from ambient 23°C to 54°C at the maximum experimental voltage (29 Vpp), computational fluid dynamic simulations and controls (absence of US) revealed that the cell medium temperature did not exceed 34°C in the pressure nodal plane. Cells exposed to US amplitudes ranging from 0-29 Vpp, at a fixed frequency sweep period (tsw = 0.05 sec), revealed that viability was minimally affected up to ~15 Vpp. There was a ~17% reduction in viability at 21 Vpp, corresponding to the onset of Rayleigh-like streaming and a ~60% reduction at 29 Vpp, corresponding to increased streaming velocity or the potential onset of cavitation. At a fixed amplitude (29 Vpp) but with varying frequency sweep period (tsw = 0.02-0.50 sec), cell viability remained relatively constant at tsw ≥ 0.08 sec, whilst viability reduced at tsw < 0.08 sec and minimum viability recorded at tsw = 0.05 sec. CONCLUSION: The absence of CA has enabled us to investigate the effect of US alone on cell viability. Moderate-to-extreme US-related stimuli of cells have allowed us to discriminate between stimuli that maintain high viability and stimuli that significantly reduce cell viability. Results from this study may be of potential interest to researchers in the field of US-induced intracellular drug delivery and ultrasonic manipulation of biological cells.


Assuntos
Microfluídica/métodos , Miócitos Cardíacos/citologia , Ultrassom , Animais , Sobrevivência Celular , Oscilometria , Ratos , Reologia , Temperatura
15.
J Mater Sci Mater Med ; 24(6): 1417-23, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23512153

RESUMO

A novel analysis system for the quantification of sclerosing foam properties under clinically relevant conditions was developed with the purpose of establishing a robust methodology for comparative characterisation of different foam formulations and production strategies. The developed biomimetic-inspired model comprised of 4 or 10 mm inner diameter polytetrafluoroethylene tubing, filled with a blood substitute and fixed to a platform with an adjustable inclination angle. Sclerosing foams were produced by mixing polidocanol with either atmospheric air or 100 % CO2, using a double-syringe system method. Individual foams were injected into the tube, while videos were captured simultaneously. Videos were then transferred to an in-house computational foam analysis system (CFAS) which performed a sequence of semi-automated operations, allowing quantitative characterisation of sclerosing foam dynamic behaviour. Using CFAS, degradation rates of different foams were measured and the effect of gas composition, liquid sclerosant concentration and time delay between foam production and injection were evaluated.


Assuntos
Biomimética/instrumentação , Biomimética/métodos , Gases/uso terapêutico , Teste de Materiais/instrumentação , Reologia/instrumentação , Soluções Esclerosantes/química , Soluções Esclerosantes/uso terapêutico , Varizes/terapia , Desenho de Equipamento , Humanos , Varizes/fisiopatologia , Viscosidade
16.
Pharmaceutics ; 15(5)2023 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-37242736

RESUMO

The presence of multi-drug resistant biofilms in chronic, persistent infections is a major barrier to successful clinical outcomes of therapy. The production of an extracellular matrix is a characteristic of the biofilm phenotype, intrinsically linked to antimicrobial tolerance. The heterogeneity of the extracellular matrix makes it highly dynamic, with substantial differences in composition between biofilms, even in the same species. This variability poses a major challenge in targeting drug delivery systems to biofilms, as there are few elements both suitably conserved and widely expressed across multiple species. However, the presence of extracellular DNA within the extracellular matrix is ubiquitous across species, which alongside bacterial cell components, gives the biofilm its net negative charge. This research aims to develop a means of targeting biofilms to enhance drug delivery by developing a cationic gas-filled microbubble that non-selectively targets the negatively charged biofilm. Cationic and uncharged microbubbles loaded with different gases were formulated and tested to determine their stability, ability to bind to negatively charged artificial substrates, binding strength, and, subsequently, their ability to adhere to biofilms. It was shown that compared to their uncharged counterparts, cationic microbubbles facilitated a significant increase in the number of microbubbles that could both bind and sustain their interaction with biofilms. This work is the first to demonstrate the utility of charged microbubbles for the non-selective targeting of bacterial biofilms, which could be used to significantly enhance stimuli-mediated drug delivery to the bacterial biofilm.

17.
Nat Rev Microbiol ; 21(9): 555-572, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37258686

RESUMO

Although new antibiofilm agents have been developed to prevent and eliminate pathogenic biofilms, their widespread clinical use is hindered by poor biocompatibility and bioavailability, unspecific interactions and insufficient local concentrations. The development of innovative drug delivery strategies can facilitate penetration of antimicrobials through biofilms, promote drug dispersal and synergistic bactericidal effects, and provide novel paradigms for clinical application. In this Review, we discuss the potential benefits of such emerging techniques for improving the clinical efficacy of antibiofilm agents, as well as highlighting the existing limitations and future prospects for these therapies in the clinic.


Assuntos
Antibacterianos , Anti-Infecciosos , Antibacterianos/farmacologia , Sistemas de Liberação de Medicamentos , Anti-Infecciosos/farmacologia , Biofilmes
18.
ACS Biomater Sci Eng ; 9(10): 5912-5923, 2023 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-37747762

RESUMO

Microbubbles utilize high-frequency oscillations under ultrasound stimulation to induce a range of therapeutic effects in cells, often through mechanical stimulation and permeabilization of cells. One of the largest challenges remaining in the field is the characterization of interactions between cells and microbubbles at therapeutically relevant frequencies. Technical limitations, such as employing sufficient frame rates and obtaining sufficient image resolution, restrict the quantification of the cell's mechanical response to oscillating microbubbles. Here, a novel methodology was developed to address many of these limitations and improve the image resolution of cell-microbubble interactions at high frame rates. A compact acoustic device was designed to house cells and microbubbles as well as a therapeutically relevant acoustic field while being compatible with a Shimadzu HPV-X camera. Cell viability tests confirmed the successful culture and proliferation of cells, and the attachment of DSPC- and cationic DSEPC-microbubbles to osteosarcoma cells was quantified. Microbubble oscillation was observed within the device at a frame rate of 5 million FPS, confirming suitable acoustic field generation and ultra high-speed image capture. High spatial resolution in these images revealed observable deformation in cells following microbubble oscillation and supported the first use of digital image correlation for strain quantification in a single cell. The novel acoustic device provided a simple, effective method for improving the spatial resolution of cell-microbubble interaction images, presenting the opportunity to develop an understanding of the mechanisms driving the therapeutic effects of oscillating microbubbles upon ultrasound exposure.


Assuntos
Acústica , Microbolhas , Células Cultivadas
19.
Micromachines (Basel) ; 14(9)2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37763926

RESUMO

Nanoscale liposomes have been extensively researched and employed clinically for the delivery of biologically active compounds, including chemotherapy drugs and vaccines, offering improved pharmacokinetic behaviour and therapeutic outcomes. Traditional laboratory-scale production methods often suffer from limited control over liposome properties (e.g., size and lamellarity) and rely on laborious multistep procedures, which may limit pre-clinical research developments and innovation in this area. The widespread adoption of alternative, more controllable microfluidic-based methods is often hindered by complexities and costs associated with device manufacturing and operation, as well as the short device lifetime and the relatively low liposome production rates in some cases. In this study, we demonstrated the production of liposomes comprising therapeutically relevant lipid formulations, using a cost-effective 3D-printed reactor-in-a-centrifuge (RIAC) device. By adjusting formulation- and production-related parameters, including the concentration of polyethylene glycol (PEG), temperature, centrifugation time and speed, and lipid concentration, the mean size of the produced liposomes could be tuned in the range of 140 to 200 nm. By combining selected experimental parameters, the method was capable of producing liposomes with a therapeutically relevant mean size of ~174 nm with narrow size distribution (polydispersity index, PDI ~0.1) at a production rate of >8 mg/min. The flow-through method proposed in this study has potential to become an effective and versatile laboratory-scale approach to simplify the synthesis of therapeutic liposomal formulations.

20.
Biomed Microdevices ; 14(1): 153-63, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21987002

RESUMO

A microfluidic based device has been developed for the characterisation of embolisation behaviour with polyvinyl alcohol (PVA) hydrogel beads within a microchannel network with bifurcations which mimic the blood vessel network. Both distal and proximal embolisations were achieved within the PMMA-made microdevice exhibiting comparable embolisation characteristics with those observed in vivo. Results showed that small beads allowed more distal embolisations with a reduced control of the spatial location of occlusion sites. In contrast, large beads generated effective proximal embolisations with an improved reproducibility of embolisation performance. Embolic bead hydrodynamics, partitioning at bifurcations, penetration through microchannels and embolisation locations across the channel network were characterised by quantifying the effects of embolic bead size, bead concentration, channel geometry and fluidic conditions. This development provided further insights into the physical principles governing embolisation performances within the constructed microdevices allowing the improvement of the predictability and controllability of the clinical process outcomes. Furthermore, it can potentially provide a useful platform for preclinical research as an alternative to animal models, with an ultimate goal to reduce the amount of animal testing.


Assuntos
Biomimética , Embolização Terapêutica/instrumentação , Técnicas Analíticas Microfluídicas , Álcool de Polivinil/química , Humanos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa