Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Proc Biol Sci ; 288(1947): 20210212, 2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33726596

RESUMO

While an increasing number of studies indicate that the range, diversity and abundance of many wild pollinators has declined, the global area of pollinator-dependent crops has significantly increased over the last few decades. Crop pollination studies to date have mainly focused on either identifying different guilds pollinating various crops, or on factors driving spatial changes and turnover observed in these communities. The mechanisms driving temporal stability for ecosystem functioning and services, however, remain poorly understood. Our study quantifies temporal variability observed in crop pollinators in 21 different crops across multiple years at a global scale. Using data from 43 studies from six continents, we show that (i) higher pollinator diversity confers greater inter-annual stability in pollinator communities, (ii) temporal variation observed in pollinator abundance is primarily driven by the three-most dominant species, and (iii) crops in tropical regions demonstrate higher inter-annual variability in pollinator species richness than crops in temperate regions. We highlight the importance of recognizing wild pollinator diversity in agricultural landscapes to stabilize pollinator persistence across years to protect both biodiversity and crop pollination services. Short-term agricultural management practices aimed at dominant species for stabilizing pollination services need to be considered alongside longer term conservation goals focussed on maintaining and facilitating biodiversity to confer ecological stability.


Assuntos
Ecossistema , Polinização , Agricultura , Animais , Abelhas , Biodiversidade , Produtos Agrícolas , Insetos
2.
Proc Natl Acad Sci U S A ; 115(33): E7863-E7870, 2018 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-30072434

RESUMO

The idea that noncrop habitat enhances pest control and represents a win-win opportunity to conserve biodiversity and bolster yields has emerged as an agroecological paradigm. However, while noncrop habitat in landscapes surrounding farms sometimes benefits pest predators, natural enemy responses remain heterogeneous across studies and effects on pests are inconclusive. The observed heterogeneity in species responses to noncrop habitat may be biological in origin or could result from variation in how habitat and biocontrol are measured. Here, we use a pest-control database encompassing 132 studies and 6,759 sites worldwide to model natural enemy and pest abundances, predation rates, and crop damage as a function of landscape composition. Our results showed that although landscape composition explained significant variation within studies, pest and enemy abundances, predation rates, crop damage, and yields each exhibited different responses across studies, sometimes increasing and sometimes decreasing in landscapes with more noncrop habitat but overall showing no consistent trend. Thus, models that used landscape-composition variables to predict pest-control dynamics demonstrated little potential to explain variation across studies, though prediction did improve when comparing studies with similar crop and landscape features. Overall, our work shows that surrounding noncrop habitat does not consistently improve pest management, meaning habitat conservation may bolster production in some systems and depress yields in others. Future efforts to develop tools that inform farmers when habitat conservation truly represents a win-win would benefit from increased understanding of how landscape effects are modulated by local farm management and the biology of pests and their enemies.


Assuntos
Produtos Agrícolas , Ecossistema , Modelos Biológicos , Controle Biológico de Vetores , Animais , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/parasitologia
3.
Oecologia ; 192(2): 577-590, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31897723

RESUMO

Mutualistic interactions between plants and pollinators play an essential role in the organization and persistence of biodiversity. The structure of interaction networks mediates the resilience of local communities and ecosystem functioning to environmental changes. Hence, network structure conservation may be more critical for maintaining biodiversity and ecological services than the preservation of isolated species in changing landscapes. Here, we intensively surveyed seven 36 km2 landscapes to empirically investigate the effects of forest loss and landscape configuration on the structure of plant-pollinator networks in understory vegetation of Brazilian Atlantic Forest. Our results indicate that forest loss and isolation affect the structure of the plant-pollinator networks, which were smaller in deforested landscapes, and less specialized as patch isolation increased. Lower nestedness and degree of specialization (H'2) indicated that the remaining plant and bee species tend to be generalists, and many of the expected specialized interactions in the network were already lost. Because generalist species generate a cohesive interaction core in these networks, these simplified networks might be resistant to loss of peripheral species, but may be susceptible to the extinction of the most generalist species. We suggest that such a network pattern is an outcome of landscapes with a few remaining isolated patches of natural habitat. Our results add a new perspective to studies of plant-pollinator networks in fragmented landscapes, showing that those interaction networks might also be used to indicate how changes in natural habitat affect biodiversity and biotic interactions.


Assuntos
Ecossistema , Polinização , Animais , Abelhas , Brasil , Florestas , Plantas
4.
Proc Natl Acad Sci U S A ; 113(1): 146-51, 2016 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-26621730

RESUMO

Wild and managed bees are well documented as effective pollinators of global crops of economic importance. However, the contributions by pollinators other than bees have been little explored despite their potential to contribute to crop production and stability in the face of environmental change. Non-bee pollinators include flies, beetles, moths, butterflies, wasps, ants, birds, and bats, among others. Here we focus on non-bee insects and synthesize 39 field studies from five continents that directly measured the crop pollination services provided by non-bees, honey bees, and other bees to compare the relative contributions of these taxa. Non-bees performed 25-50% of the total number of flower visits. Although non-bees were less effective pollinators than bees per flower visit, they made more visits; thus these two factors compensated for each other, resulting in pollination services rendered by non-bees that were similar to those provided by bees. In the subset of studies that measured fruit set, fruit set increased with non-bee insect visits independently of bee visitation rates, indicating that non-bee insects provide a unique benefit that is not provided by bees. We also show that non-bee insects are not as reliant as bees on the presence of remnant natural or seminatural habitat in the surrounding landscape. These results strongly suggest that non-bee insect pollinators play a significant role in global crop production and respond differently than bees to landscape structure, probably making their crop pollination services more robust to changes in land use. Non-bee insects provide a valuable service and provide potential insurance against bee population declines.


Assuntos
Produtos Agrícolas/crescimento & desenvolvimento , Insetos/fisiologia , Polinização , Animais , Formigas/fisiologia , Abelhas/fisiologia , Ecossistema , Flores/crescimento & desenvolvimento , Frutas/crescimento & desenvolvimento , Vespas/fisiologia
5.
Ecology ; 98(7): 1849-1858, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28402583

RESUMO

Plant species within communities may overlap in pollinators' use and influence visitation patterns of shared pollinators, potentially engaging in indirect interactions (e.g., facilitation or competition). While several studies have explored the mechanisms regulating insect-pollination networks, there is a lack of studies on bird-pollination systems, particularly in species-rich tropical areas. Here, we evaluated if phenotypic similarity, resource availability (floral abundance), evolutionary relatedness and flowering phenology affect the potential for indirect effects via shared pollinators in hummingbird-pollinated plant species within four communities in the Brazilian Atlantic forest. Among the evaluated factors, phenotypic similarity (corolla length and anther height) was the most important variable, while resource availability (floral abundance) had a secondary importance. On the other hand, evolutionary relatedness and flowering phenology were less important, which altogether highlights the relevance of convergent evolution and that the contribution of a plant to the diet of the pollinators of another plant is independent of the level of temporal overlap in flowering in this tropical system. Interestingly, our findings contrast with results from multiple insect-pollinated plant communities, mostly from temperate regions, in which floral abundance was the most important driver, followed by evolutionary relatedness and phenotypic similarity. We propose that these contrasting results are due to high level of specialization inherent to tropical hummingbird-pollination systems. Moreover, our results demonstrated that factors defining linkage rules of plant-hummingbird networks also determinate plant-plant potential indirect effects. Future studies are needed to test if these findings can be generalized to other highly specialized systems. Overall, our results have important implications for the understanding of ecological processes due resource sharing in mutualistic systems.


Assuntos
Aves/fisiologia , Polinização , Animais , Brasil , Flores , Plantas
6.
Glob Chang Biol ; 23(11): 4946-4957, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28488295

RESUMO

Agricultural intensification is a leading cause of global biodiversity loss, which can reduce the provisioning of ecosystem services in managed ecosystems. Organic farming and plant diversification are farm management schemes that may mitigate potential ecological harm by increasing species richness and boosting related ecosystem services to agroecosystems. What remains unclear is the extent to which farm management schemes affect biodiversity components other than species richness, and whether impacts differ across spatial scales and landscape contexts. Using a global metadataset, we quantified the effects of organic farming and plant diversification on abundance, local diversity (communities within fields), and regional diversity (communities across fields) of arthropod pollinators, predators, herbivores, and detritivores. Both organic farming and higher in-field plant diversity enhanced arthropod abundance, particularly for rare taxa. This resulted in increased richness but decreased evenness. While these responses were stronger at local relative to regional scales, richness and abundance increased at both scales, and richness on farms embedded in complex relative to simple landscapes. Overall, both organic farming and in-field plant diversification exerted the strongest effects on pollinators and predators, suggesting these management schemes can facilitate ecosystem service providers without augmenting herbivore (pest) populations. Our results suggest that organic farming and plant diversification promote diverse arthropod metacommunities that may provide temporal and spatial stability of ecosystem service provisioning. Conserving diverse plant and arthropod communities in farming systems therefore requires sustainable practices that operate both within fields and across landscapes.


Assuntos
Agricultura/métodos , Artrópodes , Biodiversidade , Ecossistema , Animais
7.
Mol Ecol ; 25(21): 5345-5358, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27662098

RESUMO

Across the globe, wild bees are threatened by ongoing natural habitat loss, risking the maintenance of plant biodiversity and agricultural production. Despite the ecological and economic importance of wild bees and the fact that several species are now managed for pollination services worldwide, little is known about how land use and beekeeping practices jointly influence gene flow. Using stingless bees as a model system, containing wild and managed species that are presumed to be particularly susceptible to habitat degradation, here we examine the main drivers of tropical bee gene flow. We employ a novel landscape genetic approach to analyse data from 135 populations of 17 stingless bee species distributed across diverse tropical biomes within the Americas. Our work has important methodological implications, as we illustrate how a maximum-likelihood approach can be applied in a meta-analysis framework to account for multiple factors, and weight estimates by sample size. In contrast to previously held beliefs, gene flow was not related to body size or deforestation, and isolation by geographic distance (IBD) was significantly affected by management, with managed species exhibiting a weaker IBD than wild ones. Our study thus reveals the critical importance of beekeeping practices in shaping the patterns of genetic differentiation across bee species. Additionally, our results show that many stingless bee species maintain high gene flow across heterogeneous landscapes. We suggest that future efforts to preserve wild tropical bees should focus on regulating beekeeping practices to maintain natural gene flow and enhancing pollinator-friendly habitats, prioritizing species showing a limited dispersal ability.


Assuntos
Criação de Abelhas , Abelhas/genética , Fluxo Gênico , Genética Populacional , Animais , Conservação dos Recursos Naturais , Ecossistema , Geografia , Funções Verossimilhança , Clima Tropical
8.
Proc Biol Sci ; 282(1806): 20150294, 2015 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-25833861

RESUMO

Change in land cover is thought to be one of the key drivers of pollinator declines, and yet there is a dearth of studies exploring the relationships between historical changes in land cover and shifts in pollinator communities. Here, we explore, for the first time, land cover changes in England over more than 80 years, and relate them to concurrent shifts in bee and wasp species richness and community composition. Using historical data from 14 sites across four counties, we quantify the key land cover changes within and around these sites and estimate the changes in richness and composition of pollinators. Land cover changes within sites, as well as changes within a 1 km radius outside the sites, have significant effects on richness and composition of bee and wasp species, with changes in edge habitats between major land classes also having a key influence. Our results highlight not just the land cover changes that may be detrimental to pollinator communities, but also provide an insight into how increases in habitat diversity may benefit species diversity, and could thus help inform policy and practice for future land management.


Assuntos
Abelhas/fisiologia , Biodiversidade , Ecossistema , Vespas/fisiologia , Animais , Conservação dos Recursos Naturais , Inglaterra , Polinização , Fatores de Tempo
9.
Oecologia ; 174(4): 1345-57, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24337711

RESUMO

Savanna plant communities change considerably across time and space. The processes driving savanna plant species diversity, coexistence and turnover along environmental gradients are still unclear. Understanding how species respond differently to varying environmental conditions during the seedling stage, a critical stage for plant population dynamics, is needed to explain the current composition of plant communities and to enable us to predict their responses to future environmental changes. Here we investigate whether seedling response to changes in resource availability, and to competition with grass, varied between two functional groups of African savanna trees: species with small leaves, spines and N-fixing associations (fine-leaved species), and species with broad leaves, no spines, and lacking N-fixing associations (broad-leaved species). We show that while tree species were strongly suppressed by grass, the effect of resource availability on seedling performance varied considerably between the two functional groups. Nutrient inputs increased stem length only of broad-leaved species and only under an even watering treatment. Low light conditions benefited mostly broad-leaved species' growth. Savannas are susceptible to ongoing global environment changes. Our results suggest that an increase in woody cover is only likely to occur in savannas if grass cover is strongly suppressed (e.g. by fire or overgrazing). However, if woody cover does increase, broad-leaved species will benefit most from the resulting shaded environments, potentially leading to an expansion of the distribution of these species. Eutrophication and changes in rainfall patterns may also affect the balance between fine- and broad-leaved species.


Assuntos
Meio Ambiente , Poaceae/crescimento & desenvolvimento , Plântula/crescimento & desenvolvimento , Árvores/fisiologia , Incêndios , Luz , Modelos Lineares , Estações do Ano , África do Sul , Árvores/crescimento & desenvolvimento , Água
10.
Ecol Lett ; 16(5): 584-99, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23489285

RESUMO

Bees provide essential pollination services that are potentially affected both by local farm management and the surrounding landscape. To better understand these different factors, we modelled the relative effects of landscape composition (nesting and floral resources within foraging distances), landscape configuration (patch shape, interpatch connectivity and habitat aggregation) and farm management (organic vs. conventional and local-scale field diversity), and their interactions, on wild bee abundance and richness for 39 crop systems globally. Bee abundance and richness were higher in diversified and organic fields and in landscapes comprising more high-quality habitats; bee richness on conventional fields with low diversity benefited most from high-quality surrounding land cover. Landscape configuration effects were weak. Bee responses varied slightly by biome. Our synthesis reveals that pollinator persistence will depend on both the maintenance of high-quality habitats around farms and on local management practices that may offset impacts of intensive monoculture agriculture.


Assuntos
Agricultura , Abelhas/fisiologia , Ecossistema , Modelos Teóricos , Polinização , Animais , Clima , Produtos Agrícolas , Flores , Densidade Demográfica
11.
Sci Adv ; 9(41): eadh0756, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37824611

RESUMO

Insect pollinator biodiversity is changing rapidly, with potential consequences for the provision of crop pollination. However, the role of land use-climate interactions in pollinator biodiversity changes, as well as consequent economic effects via changes in crop pollination, remains poorly understood. We present a global assessment of the interactive effects of climate change and land use on pollinator abundance and richness and predictions of the risk to crop pollination from the inferred changes. Using a dataset containing 2673 sites and 3080 insect pollinator species, we show that the interactive combination of agriculture and climate change is associated with large reductions in insect pollinators. As a result, it is expected that the tropics will experience the greatest risk to crop production from pollinator losses. Localized risk is highest and predicted to increase most rapidly, in regions of sub-Saharan Africa, northern South America, and Southeast Asia. Via pollinator loss alone, climate change and agricultural land use could be a risk to human well-being.


Assuntos
Mudança Climática , Produtos Agrícolas , Animais , Humanos , Insetos , Biodiversidade , Polinização , Agricultura , Ecossistema
12.
Gigascience ; 112022 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-35639882

RESUMO

BACKGROUND: Animal pollination is an important ecosystem function and service, ensuring both the integrity of natural systems and human well-being. Although many knowledge shortfalls remain, some high-quality data sets on biological interactions are now available. The development and adoption of standards for biodiversity data and metadata has promoted great advances in biological data sharing and aggregation, supporting large-scale studies and science-based public policies. However, these standards are currently not suitable to fully support interaction data sharing. RESULTS: Here we present a vocabulary of terms and a data model for sharing plant-pollinator interactions data based on the Darwin Core standard. The vocabulary introduces 48 new terms targeting several aspects of plant-pollinator interactions and can be used to capture information from different approaches and scales. Additionally, we provide solutions for data serialization using RDF, XML, and DwC-Archives and recommendations of existing controlled vocabularies for some of the terms. Our contribution supports open access to standardized data on plant-pollinator interactions. CONCLUSIONS: The adoption of the vocabulary would facilitate data sharing to support studies ranging from the spatial and temporal distribution of interactions to the taxonomic, phenological, functional, and phylogenetic aspects of plant-pollinator interactions. We expect to fill data and knowledge gaps, thus further enabling scientific research on the ecology and evolution of plant-pollinator communities, biodiversity conservation, ecosystem services, and the development of public policies. The proposed data model is flexible and can be adapted for sharing other types of interactions data by developing discipline-specific vocabularies of terms.


Assuntos
Ecossistema , Polinização , Animais , Biodiversidade , Filogenia , Padrões de Referência
13.
Ecology ; 103(3): e3614, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34921678

RESUMO

Seventy five percent of the world's food crops benefit from insect pollination. Hence, there has been increased interest in how global change drivers impact this critical ecosystem service. Because standardized data on crop pollination are rarely available, we are limited in our capacity to understand the variation in pollination benefits to crop yield, as well as to anticipate changes in this service, develop predictions, and inform management actions. Here, we present CropPol, a dynamic, open, and global database on crop pollination. It contains measurements recorded from 202 crop studies, covering 3,394 field observations, 2,552 yield measurements (i.e., berry mass, number of fruits, and fruit density [kg/ha], among others), and 47,752 insect records from 48 commercial crops distributed around the globe. CropPol comprises 32 of the 87 leading global crops and commodities that are pollinator dependent. Malus domestica is the most represented crop (32 studies), followed by Brassica napus (22 studies), Vaccinium corymbosum (13 studies), and Citrullus lanatus (12 studies). The most abundant pollinator guilds recorded are honey bees (34.22% counts), bumblebees (19.19%), flies other than Syrphidae and Bombyliidae (13.18%), other wild bees (13.13%), beetles (10.97%), Syrphidae (4.87%), and Bombyliidae (0.05%). Locations comprise 34 countries distributed among Europe (76 studies), North America (60), Latin America and the Caribbean (29), Asia (20), Oceania (10), and Africa (7). Sampling spans three decades and is concentrated on 2001-2005 (21 studies), 2006-2010 (40), 2011-2015 (88), and 2016-2020 (50). This is the most comprehensive open global data set on measurements of crop flower visitors, crop pollinators and pollination to date, and we encourage researchers to add more datasets to this database in the future. This data set is released for non-commercial use only. Credits should be given to this paper (i.e., proper citation), and the products generated with this database should be shared under the same license terms (CC BY-NC-SA).


Assuntos
Ecossistema , Polinização , Animais , Abelhas , Produtos Agrícolas , Flores , Insetos
14.
Ecol Lett ; 14(10): 1062-72, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21806746

RESUMO

Sustainable agricultural landscapes by definition provide high magnitude and stability of ecosystem services, biodiversity and crop productivity. However, few studies have considered landscape effects on the stability of ecosystem services. We tested whether isolation from florally diverse natural and semi-natural areas reduces the spatial and temporal stability of flower-visitor richness and pollination services in crop fields. We synthesised data from 29 studies with contrasting biomes, crop species and pollinator communities. Stability of flower-visitor richness, visitation rate (all insects except honey bees) and fruit set all decreased with distance from natural areas. At 1 km from adjacent natural areas, spatial stability decreased by 25, 16 and 9% for richness, visitation and fruit set, respectively, while temporal stability decreased by 39% for richness and 13% for visitation. Mean richness, visitation and fruit set also decreased with isolation, by 34, 27 and 16% at 1 km respectively. In contrast, honey bee visitation did not change with isolation and represented > 25% of crop visits in 21 studies. Therefore, wild pollinators are relevant for crop productivity and stability even when honey bees are abundant. Policies to preserve and restore natural areas in agricultural landscapes should enhance levels and reliability of pollination services.


Assuntos
Abelhas/fisiologia , Ecossistema , Polinização/fisiologia , Agricultura , Animais , Biodiversidade
15.
Philos Trans R Soc Lond B Biol Sci ; 376(1834): 20200171, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34365822

RESUMO

Ongoing environmental changes are affecting physical, chemical and biological soil components. Evidence of impacts of soil changes on pollinators' and seed dispersers' behaviour, fitness and density is scarce, but growing. Here, we reviewed information on such impacts and on a number of mechanisms that may explain its propagation, taking into account the full range of resources required by the large and diverse number of species of these two important functional groups. We show that while there is substantial evidence on the effects of soil nitrogen enrichment and changes in soil water content on the quality and quantity of floral and fruit resources, little is known on the effects of changes of other soil properties (e.g. soil pH, soil structure, other nutrients). Also, the few studies showing correlations between soil changes and pollinator and seed disperser foraging behaviour or fitness do not clearly identify the mechanisms that explain such correlation. Finally, most studies (including those with nitrogen and water) are local and limited to a small number of species, and it remains unclear how variable such effects are across time and geographical regions, and the strength of interactive effects between soil properties. Increasing research on this topic, taking into consideration how impacts propagate through species interaction networks, will provide essential information to predict impacts of ongoing environmental changes and help guide conservation plans that aim to minimize impacts on ecosystem functioning. This article is part of the theme issue 'The role of soils in delivering Nature's Contributions to People'.


Assuntos
Polinização , Dispersão de Sementes , Solo/química
16.
Philos Trans R Soc Lond B Biol Sci ; 376(1834): 20200185, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34365826

RESUMO

This special issue provides an assessment of the contribution of soils to Nature's Contributions to People (NCP). Here, we combine this assessment and previously published relationships between NCP and delivery on the UN Sustainable Development Goals (SDGs) to infer contributions of soils to the SDGs. We show that in addition to contributing positively to the delivery of all NCP, soils also have a role in underpinning all SDGs. While highlighting the great potential of soils to contribute to sustainable development, it is recognized that poorly managed, degraded or polluted soils may contribute negatively to both NCP and SDGs. The positive contribution, however, cannot be taken for granted, and soils must be managed carefully to keep them healthy and capable of playing this vital role. A priority for soil management must include: (i) for healthy soils in natural ecosystems, protect them from conversion and degradation; (ii) for managed soils, manage in a way to protect and enhance soil biodiversity, health and sustainability and to prevent degradation; and (iii) for degraded soils, restore to full soil health. We have enough knowledge now to move forward with the implementation of best management practices to maintain and improve soil health. This analysis shows that this is not just desirable, it is essential if we are to meet the SDG targets by 2030 and achieve sustainable development more broadly in the decades to come. This article is part of the theme issue 'The role of soils in delivering Nature's Contributions to People'.


Assuntos
Conservação dos Recursos Naturais , Solo , Desenvolvimento Sustentável , Nações Unidas , Humanos
17.
Ecology ; 91(4): 1063-74, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20462120

RESUMO

Invasive plants are considered a major cause of ecosystem degradation worldwide. While their impacts on native plants have been widely reported, there is little information on how these impacts propagate through food webs and affect species at higher trophic levels. Using a quantitative food web approach we evaluated the impacts of an invasive plant on plant-herbivore-parasitoid communities, asking specifically how diet breadth influences the propagation of such impacts. Measuring the impact of the alien plant at the plant level seriously underestimated the community-level effect of this weed as it also caused changes in the abundance of native herbivores and parasitoids, along with a decrease in parasitoid species richness. The invading plant affected specialist and generalist subsets of communities differently, having significant and strong negative impacts on the abundance of all specialists with no negative effect on generalist consumers. Specialist consumer decline led to further disruptions of top-down regulatory mechanisms, releasing generalist species from competition via shared natural enemies. Plant invasion also significantly increased the evenness of species abundance of all trophic levels in the food webs, as well as the evenness of species interaction frequency. Extending impact evaluation to higher trophic levels and considering changes in trophic diversity within levels is hence essential for a full evaluation of the consequences of invasion by alien plants. Moreover, information on diet breadth of species in the invaded community should be taken into account when evaluating/predicting the impacts on any introduced species.


Assuntos
Dieta , Comportamento Alimentar , Cadeia Alimentar , Insetos/fisiologia , Plantas/classificação , Animais , Conservação dos Recursos Naturais , Interações Hospedeiro-Parasita , Plantas/parasitologia , Reino Unido
18.
Sci Adv ; 5(10): eaax0121, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31663019

RESUMO

Human land use threatens global biodiversity and compromises multiple ecosystem functions critical to food production. Whether crop yield-related ecosystem services can be maintained by a few dominant species or rely on high richness remains unclear. Using a global database from 89 studies (with 1475 locations), we partition the relative importance of species richness, abundance, and dominance for pollination; biological pest control; and final yields in the context of ongoing land-use change. Pollinator and enemy richness directly supported ecosystem services in addition to and independent of abundance and dominance. Up to 50% of the negative effects of landscape simplification on ecosystem services was due to richness losses of service-providing organisms, with negative consequences for crop yields. Maintaining the biodiversity of ecosystem service providers is therefore vital to sustain the flow of key agroecosystem benefits to society.


Assuntos
Produtos Agrícolas/metabolismo , Produtos Agrícolas/fisiologia , Agricultura/métodos , Biodiversidade , Produção Agrícola/métodos , Ecossistema , Humanos , Controle Biológico de Vetores/métodos , Polinização/fisiologia
19.
Ecol Lett ; 11(7): 690-700, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18422636

RESUMO

Despite current concern about the safety of biological control of weeds, assessing the indirect impacts of introduced agents is not common practice. Using 17 replicate food webs, we demonstrate that the use of a highly host-plant specific weed biocontrol agent, recently introduced into Australia, is associated with declines of local insect communities. The agent shares natural enemies (predators and parasitoids) with seed herbivore species from native plants, so apparent competition is the most likely cause for these losses. Both species richness and abundance in insect communities (seed herbivores and their parasitoids) were negatively correlated with the abundance of the biocontrol agent. Local losses of up to 11 species (dipteran seed herbivores and parasitoids) took place as the biocontrol agent abundance increased. Ineffective biocontrol agents that remain highly abundant in the community are most likely to have persistent, indirect negative effects. Our findings suggest that more investment is required in pre-release studies on the effectiveness of biocontrol agents, as well as in post-release studies assessing indirect impacts, to avoid or minimize the release of potentially damaging species.


Assuntos
Asteraceae/fisiologia , Dípteros/fisiologia , Controle Biológico de Vetores , Animais , Biodiversidade , Cadeia Alimentar , Himenópteros/fisiologia , Densidade Demográfica , Sementes
20.
PLoS One ; 13(11): e0204460, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30388124

RESUMO

The demand for insect-pollinated crops is increasing. Conventional agricultural intensification heavily relies on increased input of fertilizers, which can have negative effects on local biodiversity. Such effects may be particularly accentuated in biodiversity hotspots that are naturally nutrient-poor. Ecological intensification of farming, i.e. practices that increase production through the increase of ecosystem services, emerges as an alternative to conventional intensification. For example, practices that boost abundance and diversity of crop pollinators can lead to substantial increases in cropland productivity. However, little is known about the synergisms and trade-offs between fertilizer input and such ecological intensification practices. Here we investigate interactive effects between fertilization practices and the provision of ecosystem services in a biodiversity hotspot where conventional agriculture is rapidly expanding (Brazilian savannas). We focus on a highly nitrogen-demanding crop species that benefits from pollinators (the common bean, Phaseolus vulgaris L.), for which nitrogen input greatly varies in the study region. Our findings show that positive effects of native pollinators on crop yield are most accentuated under low inputs of nitrogen (e.g. equal to or below 72kg ha-1). This interactive effect could be due to changes in flower visitor community composition or behaviour. Our study also suggests that landscape management practices that minimize isolation from patches of natural vegetation and maximize its cover nearby (within 500 meters) of production areas can increase pollinator and biocontrol agent abundance and richness. Overall, these results suggest that ecological intensification is a valuable alternative for common bean production in Brazil, and potentially other regions of the world. Land productivity can be enhanced if an adequate balance of chemical inputs and landscape management is achieved.


Assuntos
Agricultura , Produtos Agrícolas/fisiologia , Fertilizantes , Phaseolus/fisiologia , Polinização , Agricultura/métodos , Animais , Biodiversidade , Conservação dos Recursos Naturais , Ecossistema , Fertilizantes/análise , Insetos/fisiologia , Nitrogênio/análise
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa