Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Photochem Photobiol Sci ; 22(4): 893-904, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36681778

RESUMO

Beetle luciferases were classified into three functional groups: (1) pH-sensitive yellow-green-emitting (fireflies) which change the bioluminescence color to red at acidic pH, high temperatures and presence of heavy metals; (2) the pH-insensitive green-yellow-emitting (click beetles, railroad worms and firefly isozymes) which are not affected by these factors, and (3) pH-insensitive red-emitting. Although the pH-sensing site in firefly luciferases was recently identified, it is unclear why some luciferases are pH-insensitive despite the presence of some conserved pH-sensing residues. Through circular dichroism, we compared the secondary structural changes and unfolding temperature of luciferases of representatives of these three groups: (1) pH-sensitive green-yellow-emitting Macrolampis sp2 (Mac) and Amydetes vivianii (Amy) firefly luciferases; (2) the pH-insensitive green-emitting Pyrearinus termitilluminans larval click beetle (Pte) and Aspisoma lineatum (Al2) larval firefly luciferases, and (3) the pH-insensitive red-emitting Phrixotrix hirtus railroadworm (PxRE) luciferase. The most blue-shifted luciferases, independently of pH sensitivity, are thermally more stable at different pHs than the red-shifted ones. The pH-sensitive luciferases undergo increases of α-helices and thermal stability above pH 6. The pH-insensitive Pte luciferase secondary structure remains stable between pH 6 and 8, whereas the Al2 luciferase displays an increase of the ß-sheet at pH 8. The PxRE luciferase also displays an increase of α-helices at pH 8. The results indicate that green-yellow emission in beetle luciferases can be attained by: (1) a structurally rigid scaffold which stabilizes a single closed active site conformation in the pH-insensitive luciferases, and (2) active site compaction above pH 7.0 in the more flexible pH-sensitive luciferases.


Assuntos
Besouros , Animais , Besouros/metabolismo , Luciferases de Vaga-Lume/metabolismo , Sequência de Aminoácidos , Luciferases/química , Vaga-Lumes , Medições Luminescentes
2.
Photochem Photobiol Sci ; 20(1): 113-122, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33721241

RESUMO

Beetle luciferases catalyze the bioluminescent oxidation of D-luciferin, producing bioluminescence colors ranging from green to red, using two catalytic steps: adenylation of D-luciferin to produce D-luciferyl-adenylate and PPi, and oxidation of D-luciferyl-adenylate, yielding AMP, CO2, and excited oxyluciferin, the emitter. Luciferases and CoA-ligases display a similar fold, with a large N-terminal domain, and a small C-terminal domain which undergoes rotation, closing the active site and promoting both adenylation and oxidative reactions. The effect of C-terminal domain deletion was already investigated for Photinus pyralis firefly luciferase, resulting in a red-emitting mutant with severely impacted luminescence activity. However, the contribution of C-terminal in the bioluminescence activities and colors of other beetle luciferases and related ancestral luciferases were not investigated yet. Here we compared the effects of the C-terminal domain deletion on green-emitting luciferases of Pyrearinus termitilluminans (Pte) click beetle and Phrixothrix vivianii railroadworm, and on the red-emitting luciferase of Phrixothrix hirtus railroadworm and luciferase-like enzyme of Zophobas morio. In all cases, the domain deletion severely impacted the overall bioluminescence activities and, slightly less, the oxidative activities, and usually red-shifted the bioluminescence colors. The results support the involvement of the C-terminal in shielding the active site from the solvent during the light emitting step. However, in Pte luciferase, the deletion caused only a 10 nm red-shift, indicating a distinctive active site which remains more shielded, independently of the C'-terminal. Altogether, the results confirm the main contribution of the C-terminal for the catalysis of the adenylation reaction and for active site shielding during the light emitting step.


Assuntos
Proteínas de Insetos/metabolismo , Luciferases/metabolismo , Sequência de Aminoácidos , Animais , Benzotiazóis/química , Benzotiazóis/metabolismo , Sítios de Ligação , Besouros/enzimologia , Proteínas de Insetos/química , Proteínas de Insetos/genética , Cinética , Luciferases/química , Luciferases/genética , Luciferases de Vaga-Lume/química , Luciferases de Vaga-Lume/genética , Luciferases de Vaga-Lume/metabolismo , Medições Luminescentes , Simulação de Acoplamento Molecular , Mutagênese , Domínios Proteicos , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação
3.
Luminescence ; 36(2): 367-376, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32959965

RESUMO

The accumulation of toxic carboxylic compounds may cause severe effects on the environment and living organisms. A luciferase-like enzyme, previously cloned from the Malpighian tubules of the non-luminescent Zophobas morio mealworm, displays thioesterification activity with a wide range of carboxylic substrates, and produces weak red luminescence in the presence of ATP and firefly d-luciferin, a xenobiotic for this organism. To better investigate the function of this enzyme in carboxylic xenobiotic detoxification, we analyzed the inhibitory effect of different xenobiotic carboxylic acids on the luminescence activity of this enzyme, including environmental pollutants and pharmaceutical compounds. Noteworthy, the anti-inflammatory drug diclofenac severely inhibited this luciferase-like enzyme luminescence activity, both in in vitro (IC50 20 µM) and in vivo in bacterial cells assays, when compared with other beetle luciferases. Similar results were obtained with its brighter I327S mutant. Kinetic analysis of diclofenac's effect on luminescence activity indicated mixed-type inhibition for both ATP and d-luciferin. Modelling studies showed five potential binding sites for diclofenac, including the coenzyme A binding site, which showed one of the highest binding constant. Taken together, these results raise the possibility of using this luciferase-like enzyme for the development of novel whole-cell luminescent biosensors for diclofenac and similar drugs.


Assuntos
Besouros , Sequência de Aminoácidos , Animais , Diclofenaco , Luciferina de Vaga-Lumes , Cinética , Luciferases/genética , Luciferases/metabolismo , Luminescência
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa