Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Microb Cell Fact ; 20(1): 126, 2021 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-34217291

RESUMO

BACKGROUND: The fungal cell wall is an essential and robust external structure that protects the cell from the environment. It is mainly composed of polysaccharides with different functions, some of which are necessary for cell integrity. Thus, the process of fractionation and analysis of cell wall polysaccharides is useful for studying the function and relevance of each polysaccharide, as well as for developing a variety of practical and commercial applications. This method can be used to study the mechanisms that regulate cell morphogenesis and integrity, giving rise to information that could be applied in the design of new antifungal drugs. Nonetheless, for this method to be reliable, the availability of trustworthy commercial recombinant cell wall degrading enzymes with non-contaminating activities is vital. RESULTS: Here we examined the efficiency and reproducibility of 12 recombinant endo-ß(1,3)-D-glucanases for specifically degrading the cell wall ß(1,3)-D-glucan by using a fast and reliable protocol of fractionation and analysis of the fission yeast cell wall. This protocol combines enzymatic and chemical degradation to fractionate the cell wall into the four main polymers: galactomannoproteins, α-glucan, ß(1,3)-D-glucan and ß(1,6)-D-glucan. We found that the GH16 endo-ß(1,3)-D-glucanase PfLam16A from Pyrococcus furiosus was able to completely and reproducibly degrade ß(1,3)-D-glucan without causing the release of other polymers. The cell wall degradation caused by PfLam16A was similar to that of Quantazyme, a recombinant endo-ß(1,3)-D-glucanase no longer commercially available. Moreover, other recombinant ß(1,3)-D-glucanases caused either incomplete or excessive degradation, suggesting deficient access to the substrate or release of other polysaccharides. CONCLUSIONS: The discovery of a reliable and efficient recombinant endo-ß(1,3)-D-glucanase, capable of replacing the previously mentioned enzyme, will be useful for carrying out studies requiring the digestion of the fungal cell wall ß(1,3)-D-glucan. This new commercial endo-ß(1,3)-D-glucanase will allow the study of the cell wall composition under different conditions, along the cell cycle, in response to environmental changes or in cell wall mutants. Furthermore, this enzyme will also be greatly valuable for other practical and commercial applications such as genome research, chromosomes extraction, cell transformation, protoplast formation, cell fusion, cell disruption, industrial processes and studies of new antifungals that specifically target cell wall synthesis.


Assuntos
Parede Celular/metabolismo , Glucana Endo-1,3-beta-D-Glucosidase/metabolismo , Schizosaccharomyces/metabolismo , Schizosaccharomyces/ultraestrutura , Parede Celular/química , Glucana Endo-1,3-beta-D-Glucosidase/genética , Proteínas Recombinantes/metabolismo , Schizosaccharomyces/química , beta-Glucanas/metabolismo
2.
FEMS Microbiol Ecol ; 98(4)2022 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-35348680

RESUMO

Cryptococcus gattii, an environmental yeast isolated from plants, is one of the agents of cryptococcosis. Here, we aimed to develop a plant model to study C. gattii-plant interaction, since it is unclear how it affects the plant and the yeast. We tested three inoculation methods (scarification, infiltration, and abrasion) in three plant species: Arabidopsis thaliana, Nicotiana tabacum, and N. benthamiana. Cryptococcus gattii was able to grow in all three models, with a peak of yeast cell burden after 7 days, without any pathological effects. Furthermore, the fungal burden was reduced later, confirming that C. gattii is not a phytopathogen. Cryptococcus gattii proliferation was higher in N. benthamiana, which presented an increase in the hydrogen peroxide content, antioxidant system activity, and indoleacetic acid (IAA) production. Cryptococcus gattii colonies recovered from N. benthamiana presented lower ergosterol content, reduced capsule, and increased growth rate in vitro and inside macrophages. In vitro, IAA altered C. gattii morphology and susceptibility to antifungal drugs. We hypothesize that C. gattii can temporarily colonize plant living tissues, which can be a potential reservoir of yeast virulence, with further dissemination to the environment, birds, and mammals. In conclusion, N. benthamiana is suitable for studying C. gattii-plant interaction.


Assuntos
Arabidopsis , Criptococose , Cryptococcus gattii , Cryptococcus neoformans , Animais , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Arabidopsis/microbiologia , Criptococose/microbiologia , Mamíferos , Saccharomyces cerevisiae , Nicotiana
3.
Pharmaceuticals (Basel) ; 14(12)2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34959732

RESUMO

Fission yeast contains three essential ß(1,3)-D-glucan synthases (GSs), Bgs1, Bgs3, and Bgs4, with non-overlapping roles in cell integrity and morphogenesis. Only the bgs4+ mutants pbr1-8 and pbr1-6 exhibit resistance to GS inhibitors, even in the presence of the wild-type (WT) sequences of bgs1+ and bgs3+. Thus, Bgs1 and Bgs3 functions seem to be unaffected by those GS inhibitors. To learn more about echinocandins' mechanism of action and resistance, cytokinesis progression and cell death were examined by time-lapse fluorescence microscopy in WT and pbr1-8 cells at the start of treatment with sublethal and lethal concentrations of anidulafungin, caspofungin, and micafungin. In WT, sublethal concentrations of the three drugs caused abundant cell death that was either suppressed (anidulafungin and micafungin) or greatly reduced (caspofungin) in pbr1-8 cells. Interestingly, the lethal concentrations induced differential phenotypes depending on the echinocandin used. Anidulafungin and caspofungin were mostly fungistatic, heavily impairing cytokinesis progression in both WT and pbr1-8. As with sublethal concentrations, lethal concentrations of micafungin were primarily fungicidal in WT cells, causing cell lysis without impairing cytokinesis. The lytic phenotype was suppressed again in pbr1-8 cells. Our results suggest that micafungin always exerts its fungicidal effect by solely inhibiting Bgs4. In contrast, lethal concentrations of anidulafungin and caspofungin cause an early cytokinesis arrest, probably by the combined inhibition of several GSs.

4.
Biotechnol Adv ; 37(6): 107352, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30797093

RESUMO

In the past three decades invasive mycoses have globally emerged as a persistent source of healthcare-associated infections. The cell wall surrounding the fungal cell opposes the turgor pressure that otherwise could produce cell lysis. Thus, the cell wall is essential for maintaining fungal cell shape and integrity. Given that this structure is absent in host mammalian cells, it stands as an important target when developing selective compounds for the treatment of fungal infections. Consequently, treatment with echinocandins, a family of antifungal agents that specifically inhibits the biosynthesis of cell wall (1-3)ß-D-glucan, has been established as an alternative and effective antifungal therapy. However, the existence of many pathogenic fungi resistant to single or multiple antifungal families, together with the limited arsenal of available antifungal compounds, critically affects the effectiveness of treatments against these life-threatening infections. Thus, new antifungal therapies are required. Here we review the fungal cell wall and its relevance in biotechnology as a target for the development of new antifungal compounds, disclosing the most promising cell wall inhibitors that are currently in experimental or clinical development for the treatment of some invasive mycoses.


Assuntos
Parede Celular , Micoses , Animais , Antifúngicos , Equinocandinas , Fungos
5.
Phytomedicine ; 54: 291-301, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30668380

RESUMO

BACKGROUND: In our previous study the synergism of four combinations of Zuccagnia punctata (ZpE) and Larrea nitida (LnE) exudates with the reliable statistical-based MixLow method was assessed, and the markers of the most anti-C. albicans synergistic ZpE-LnE bi-herbal combination were quantified according to European Medicines Agency (EMA). PURPOSE: To study the mechanisms of action as well as the cytotoxic properties of the ZpE-LnE most synergistic combination found in the previous work. MATERIALS AND METHODS: Minimum Fungicidal Concentration (MFC) and rate of killing of ZpE-LnE were assessed with the microbroth dilution and the time-kill assays respectively. Morphological alterations were observed with both confocal and fluorescence microscopy on the yeast Schizosaccharomyces pombe. The ergosterol exogenous assay, the quantification of ergosterol, the sorbitol as well as glucan synthase (GS) and chitin synthase (ChS) assays were used to detect the effects on the fungal membrane and cell wall respectively. The capacity of ZpE-LnE of inhibiting Candida virulence factors was assessed with previously reported methods. The effect of ZpE-LnE and of ZpE or LnE alone on cell viability was determined on human hepatoma cells line Huh7. RESULTS: ZpE-Ln E was fungicidal killing C. albicans in a shorter time than amphotericin B and produced malformations in S. pombe cells. ZpE-LnE showed to bind to ergosterol but not to inhibit any step of the ergosterol biosynthesis. ZpE-LnE showed a low or moderate capacity of inhibiting GS and ChS. Regarding inhibition of virulence factors, ZpE-LnE significantly decreased the capacity of adhesion to eukaryotic buccal epithelial cells (BECs), did not inhibit the germ tube formation and inhibited the secretion of phospholipases and proteinases but not of haemolysins. ZpE-LnE demonstrated very low toxicity on Huh7 cells, much lower than that each extract alone. CONCLUSION: The fungicidal properties of ZpE-LnE against C. albicans, its dual mechanism of action targeting the fungal membrane's ergosterol as well as the cell wall, its capacity of inhibiting several important virulence factors added to its low toxicity, make ZpE-LnE a good candidate for the development of a new antifungal bi-Herbal Medicinal Product.


Assuntos
Antifúngicos/farmacologia , Candida albicans/efeitos dos fármacos , Fabaceae/química , Larrea/química , Extratos Vegetais/farmacologia , Anfotericina B/farmacologia , Ergosterol/farmacologia , Humanos , Testes de Sensibilidade Microbiana , Plantas Medicinais
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa