Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 288(17): 11960-72, 2013 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-23471971

RESUMO

Vesicular (v)- and target (t)-SNAREs play essential roles in intracellular membrane fusion through the formation of cytoplasmic α-helical bundles. Several v-SNAREs have a Longin N-terminal extension that, by promoting a closed conformation, plays an autoinhibitory function and decreases SNARE complex formation and membrane fusion efficiency. The molecular mechanism leading to Longin v-SNARE activation is largely unknown. Here we find that exocytosis mediated by the Longin v-SNARE TI-VAMP/VAMP7 is activated by tonic treatment with insulin and insulin-like growth factor-1 but not by depolarization and intracellular calcium rise. In search of a potential downstream mechanism, we found that TI-VAMP is phosphorylated in vitro by c-Src kinase on tyrosine 45 of the Longin domain. Accordingly, a mutation of tyrosine 45 into glutamate, but not phenylalanine, activates both t-SNARE binding and exocytosis. Activation of TI-VAMP-mediated exocytosis thus relies on tyrosine phosphorylation.


Assuntos
Exocitose/fisiologia , Proteínas R-SNARE/metabolismo , Proteínas SNARE/metabolismo , Animais , Células COS , Proteína Tirosina Quinase CSK , Chlorocebus aethiops , Exocitose/efeitos dos fármacos , Células HeLa , Humanos , Hipoglicemiantes/farmacologia , Insulina/farmacologia , Fator de Crescimento Insulin-Like I/farmacologia , Fosforilação/fisiologia , Estrutura Terciária de Proteína , Proteínas R-SNARE/genética , Proteínas SNARE/genética , Quinases da Família src/genética , Quinases da Família src/metabolismo
3.
Dev Cell ; 44(4): 405-406, 2018 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-29486189

RESUMO

The insect's fat body combines metabolic and immunological functions. In this issue of Developmental Cell, Franz et al. (2018) show that in Drosophila, cells of the fat body are not static, but can actively "swim" toward sites of epithelial injury, where they physically clog the wound and locally secrete antimicrobial peptides.


Assuntos
Drosophila , Cicatrização , Animais , Proteínas de Drosophila
4.
Dev Cell ; 45(3): 331-346.e7, 2018 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-29738712

RESUMO

Migrating cells penetrate tissue barriers during development, inflammatory responses, and tumor metastasis. We study if migration in vivo in such three-dimensionally confined environments requires changes in the mechanical properties of the surrounding cells using embryonic Drosophila melanogaster hemocytes, also called macrophages, as a model. We find that macrophage invasion into the germband through transient separation of the apposing ectoderm and mesoderm requires cell deformations and reductions in apical tension in the ectoderm. Interestingly, the genetic pathway governing these mechanical shifts acts downstream of the only known tumor necrosis factor superfamily member in Drosophila, Eiger, and its receptor, Grindelwald. Eiger-Grindelwald signaling reduces levels of active Myosin in the germband ectodermal cortex through the localization of a Crumbs complex component, Patj (Pals-1-associated tight junction protein). We therefore elucidate a distinct molecular pathway that controls tissue tension and demonstrate the importance of such regulation for invasive migration in vivo.


Assuntos
Movimento Celular/efeitos dos fármacos , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Embrião não Mamífero/citologia , Hemócitos/citologia , Macrófagos/citologia , Fator de Necrose Tumoral alfa/farmacologia , Animais , Polaridade Celular/efeitos dos fármacos , Células Cultivadas , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/metabolismo , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Hemócitos/efeitos dos fármacos , Hemócitos/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Miosinas/genética , Miosinas/metabolismo , Transdução de Sinais
5.
Cell Rep ; 16(4): 897-906, 2016 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-27425604

RESUMO

In the brain, neurons that fail to assemble into functional circuits are eliminated. Their clearance depends on microglia, immune cells that colonize the CNS during embryogenesis. Despite the importance of these cells in development and disease, the mechanisms that target and position microglia within the brain are unclear. Here we show that, in zebrafish, attraction of microglia into the brain exploits differences in developmental neuronal apoptosis and that these provide a mechanism for microglial distribution. Reducing neuronal cell death results in fewer microglia, whereas increased apoptosis enhances brain colonization, resulting in more microglia at later stages. Interestingly, attraction into the brain depends on nucleotide signaling, the same signaling system used to guide microglia toward brain injuries. Finally, this work uncovers a cell-non-autonomous role for developmental apoptosis. Classically considered a wasteful process, programmed cell death is exploited here to configure the immune-neuronal interface of the brain.


Assuntos
Apoptose/fisiologia , Encéfalo/fisiologia , Microglia/fisiologia , Peixe-Zebra/fisiologia , Animais , Lesões Encefálicas/patologia , Morte Celular/fisiologia , Neurônios/fisiologia , Transdução de Sinais/fisiologia
6.
Dev Cell ; 32(4): 469-77, 2015 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-25710533

RESUMO

Microglia are macrophages that colonize the brain during development to establish a resident population of professional phagocytes that protect against invading pathogens and contribute to brain development and homeostasis. As such, these cells sit at the interface between immunology and neurobiology. In addition to their key roles in brain physiology, microglia offer a great opportunity to address central questions in biology relating to how migrating cells find their positions in the embryo, adopt a behavior that is appropriate for that position, and interact with their local environment. We aim, in this review, to survey key recent advances in microglial research.


Assuntos
Encéfalo/metabolismo , Movimento Celular/fisiologia , Homeostase/fisiologia , Macrófagos/citologia , Microglia/citologia , Animais , Encéfalo/imunologia , Diferenciação Celular/fisiologia , Humanos , Macrófagos/imunologia
7.
Cell Rep ; 11(7): 1008-17, 2015 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-25959825

RESUMO

During development, macrophages invade organs to establish phenotypically and transcriptionally distinct tissue-resident populations. How they invade and colonize these organs is unclear. In particular, it remains to be established whether they arise from naive equivalents that colonize organs randomly or whether there are committed macrophages that follow pre-determined migration paths. Here, by using a combination of genetics and imaging approaches in the zebrafish embryo, we have addressed how macrophages colonize the brain to become microglia. Identification and cloning of a mutant that lacks microglia has shown that Slc7a7, a Leucine/Arginine transporter, defines a restricted macrophage sub-lineage and is necessary for brain colonization. By taking a photoconversion approach, we show that these macrophages give rise to microglia. This study provides direct experimental evidence for the existence of sub-lineages among embryonic macrophages.


Assuntos
Sistema y+L de Transporte de Aminoácidos/metabolismo , Encéfalo/embriologia , Macrófagos/citologia , Microglia/citologia , Células-Tronco Neurais/citologia , Proteínas de Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados , Diferenciação Celular/fisiologia , Embrião não Mamífero , Hibridização In Situ , Macrófagos/metabolismo , Microglia/metabolismo , Células-Tronco Neurais/metabolismo , Neurogênese/fisiologia , Peixe-Zebra
8.
Dev Cell ; 23(1): 166-80, 2012 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-22705394

RESUMO

The compartmental organization of eukaryotic cells is maintained dynamically by vesicular trafficking. SNARE proteins play a crucial role in intracellular membrane fusion and need to be targeted to their proper donor or acceptor membrane. The molecular mechanisms that allow for the secretory vesicles carrying the v-SNARE TI-VAMP/VAMP7 to leave the cell center, load onto microtubules, and reach the periphery to mediate exocytosis are largely unknown. Here, we show that the TI-VAMP/VAMP7 partner Varp, a Rab21 guanine nucleotide exchange factor, interacts with GolginA4 and the kinesin 1 Kif5A. Activated Rab21-GTP in turn binds to MACF1, an actin and microtubule regulator, which is itself a partner of GolginA4. These components are required for directed movement of TI-VAMP/VAMP7 vesicles from the cell center to the cell periphery. The molecular mechanisms uncovered here suggest an integrated view of the transport of vesicles carrying a specific v-SNARE toward the cell surface.


Assuntos
Complexo de Golgi/metabolismo , Transporte Proteico/fisiologia , Proteínas R-SNARE/metabolismo , Animais , Células COS , Chlorocebus aethiops , Cones de Crescimento/efeitos dos fármacos , Cones de Crescimento/metabolismo , Células HeLa , Humanos , Cinesinas/genética , Cinesinas/metabolismo , Nocodazol/farmacologia , Transporte Proteico/efeitos dos fármacos , RNA Interferente Pequeno/genética , Moduladores de Tubulina/farmacologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa