Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 480(7376): 250-3, 2011 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-22158248

RESUMO

Many mutations, including those that cause disease, only have a detrimental effect in a subset of individuals. The reasons for this are usually unknown, but may include additional genetic variation and environmental risk factors. However, phenotypic discordance remains even in the absence of genetic variation, for example between monozygotic twins, and incomplete penetrance of mutations is frequent in isogenic model organisms in homogeneous environments. Here we propose a model for incomplete penetrance based on genetic interaction networks. Using Caenorhabditis elegans as a model system, we identify two compensation mechanisms that vary among individuals and influence mutation outcome. First, feedback induction of an ancestral gene duplicate differs across individuals, with high expression masking the effects of a mutation. This supports the hypothesis that redundancy is maintained in genomes to buffer stochastic developmental failure. Second, during normal embryonic development we find that there is substantial variation in the induction of molecular chaperones such as Hsp90 (DAF-21). Chaperones act as promiscuous buffers of genetic variation, and embryos with stronger induction of Hsp90 are less likely to be affected by an inherited mutation. Simultaneously quantifying the variation in these two independent responses allows the phenotypic outcome of a mutation to be more accurately predicted in individuals. Our model and methodology provide a framework for dissecting the causes of incomplete penetrance. Further, the results establish that inter-individual variation in both specific and more general buffering systems combine to determine the outcome inherited mutations in each individual.


Assuntos
Caenorhabditis elegans/genética , Redes Reguladoras de Genes/genética , Mutação/genética , Animais , Caenorhabditis elegans/embriologia , Proteínas de Caenorhabditis elegans/biossíntese , Proteínas de Caenorhabditis elegans/genética , Retroalimentação Fisiológica , Regulação da Expressão Gênica no Desenvolvimento , Genes Duplicados/genética , Proteínas de Choque Térmico HSP90/biossíntese , Proteínas de Choque Térmico HSP90/genética , Modelos Genéticos , Penetrância , Processos Estocásticos
2.
PLoS Biol ; 10(7): e1001357, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22802725

RESUMO

BACKGROUND: Drosophila female germline stem cells (GSCs) reside adjacent to a cellular niche that secretes Bone Morphogenetic Protein (BMP) ligands and anchors the GSCs through adherens junctions. The GSCs divide asymmetrically such that one daughter remains in the niche as a GSC, while the other is born away from the niche and differentiates. However, given that the BMP signal can be diffusible, it remains unclear how a local extracellular asymmetry is sufficient to result in a robust pattern of asymmetric division. METHODS AND FINDINGS: Here we show that GSCs are polarized with respect to the cellular niche. We first use a modified biosensor to demonstrate that the small GTPase Rac is asymmetrically activated within the GSC at the niche-GSC interface. Experiments using loss-of-function and gain-of-function mutations in Rac indicate that asymmetric Rac activity both localizes the microtubule binding protein Apc2 to orient one GSC centrosome at the niche-GSC interface during interphase and activates the Jun N-terminal kinase pathway to increase the ability of the GSC to respond to BMP ligands. Other processes act in concert with each function of Rac. Specifically, we demonstrate that the GSC cell cycle arrests at prometaphase if centrosomes are misoriented. CONCLUSIONS: Thus, the GSCs, an adult stem cell present in a cellular niche, have a niche-associated polarity that couples control of the division plane with increased response to an extracellular maintenance signal. Other processes work in parallel with the Rac-mediated polarity to ensure a robust pattern of asymmetric division. We suggest that all adult stem cells likely employ multiple, independently acting mechanisms to ensure asymmetric division to maintain tissue homeostasis.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Células Germinativas/citologia , Nicho de Células-Tronco , Proteínas rac de Ligação ao GTP/metabolismo , Junções Aderentes/metabolismo , Animais , Padronização Corporal , Pontos de Checagem do Ciclo Celular , Diferenciação Celular , Núcleo Celular/genética , Núcleo Celular/metabolismo , Polaridade Celular , Centrossomo/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Ativação Enzimática , Feminino , Células Germinativas/metabolismo , Interfase , Ligantes , Sistema de Sinalização das MAP Quinases , Masculino , Ovário/citologia , Ovário/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Testículo/citologia , Testículo/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Proteínas rac de Ligação ao GTP/genética
3.
Dev Cell ; 55(6): 754-770.e6, 2020 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-33232669

RESUMO

In C. elegans, expression of the UPRER transcription factor xbp-1s in neurons cell non-autonomously activates the UPRER in the intestine, leading to enhanced proteostasis and lifespan. To better understand this signaling pathway, we isolated neurons from animals expressing neuronal xbp-1s for transcriptomic analysis, revealing a striking remodeling of transcripts involved in neuronal signaling. We then identified signaling molecules required for cell non-autonomous intestinal UPRER activation, including the biogenic amine tyramine. Expression of xbp-1s in just two pairs of neurons that synthesize tyramine, the RIM and RIC interneurons, induced intestinal UPRER activation and extended longevity, and exposure to stress led to splicing and activation of xbp-1 in these neurons. In addition, we found that neuronal xbp-1s modulates feeding behavior and reproduction, dependent upon tyramine synthesis. XBP-1s therefore remodels neuronal signaling to coordinately modulate intestinal physiology and stress-responsive behavior, functioning as a global regulator of organismal responses to stress.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Transporte/metabolismo , Mucosa Intestinal/metabolismo , Neurônios/metabolismo , Tiramina/metabolismo , Resposta a Proteínas não Dobradas , Animais , Caenorhabditis elegans , Comportamento Alimentar , Longevidade , Splicing de RNA , Estresse Fisiológico , Transcriptoma
4.
Curr Biol ; 29(14): 2322-2338.e7, 2019 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-31303493

RESUMO

The unfolded protein response of the endoplasmic reticulum (UPRER) is a crucial mediator of secretory pathway homeostasis. Expression of the spliced and active form of the UPRER transcription factor XBP-1, XBP-1s, in the nervous system triggers activation of the UPRER in the intestine of Caenorhabditis elegans (C. elegans) through release of a secreted signal, leading to increased longevity. We find that expression of XBP-1s in the neurons or intestine of the worm strikingly improves proteostasis in multiple tissues, through increased clearance of toxic proteins. To identify the mechanisms behind this enhanced proteostasis, we conducted intestine-specific RNA-seq analysis to identify genes upregulated in the intestine when XBP-1s is expressed in neurons. This revealed that neuronal XBP-1s increases the expression of genes involved in lysosome function. Lysosomes in the intestine of animals expressing neuronal XBP-1s are more acidic, and lysosomal protease activity is higher. Moreover, intestinal lysosome function is necessary for enhanced lifespan and proteostasis. These findings suggest that activation of the UPRER in the intestine through neuronal signaling can increase the activity of lysosomes, leading to extended longevity and improved proteostasis across tissues.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas de Transporte/metabolismo , Lisossomos/metabolismo , Proteostase , Resposta a Proteínas não Dobradas , Animais , Retículo Endoplasmático/metabolismo , Intestinos/fisiologia
5.
Science ; 335(6064): 82-5, 2012 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-22174126

RESUMO

Mutations often have consequences that vary across individuals. Here, we show that the stimulation of a stress response can reduce mutation penetrance in Caenorhabditis elegans. Moreover, this induced mutation buffering varies across isogenic individuals because of interindividual differences in stress signaling. This variation has important consequences in wild-type animals, producing some individuals with higher stress resistance but lower reproductive fitness and other individuals with lower stress resistance and higher reproductive fitness. This may be beneficial in an unpredictable environment, acting as a "bet-hedging" strategy to diversify risk. These results illustrate how transient environmental stimuli can induce protection against mutations, how environmental responses can underlie variable mutation buffering, and how a fitness trade-off may make variation in stress signaling advantageous.


Assuntos
Caenorhabditis elegans/genética , Aptidão Genética , Mutação , Penetrância , Estresse Fisiológico , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis elegans/fisiologia , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Núcleo Celular/metabolismo , Meio Ambiente , Fatores de Transcrição Forkhead , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico HSP90/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Fenótipo , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
6.
Genes Dev ; 21(22): 3006-16, 2007 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-18006691

RESUMO

Protein homeostasis maintains proper intracellular balance by promoting protein folding and clearance mechanisms while minimizing the stress caused by the accumulation of misfolded and damaged proteins. Chronic expression of aggregation-prone proteins is deleterious to the cell and has been linked to a wide range of conformational disorders. The molecular response to misfolded proteins is highly conserved and generally studied as a cell-autonomous process. Here, we provide evidence that neuronal signaling is an important modulator of protein homeostasis in post-synaptic muscle cells. In a forward genetic screen in Caenorhabditis elegans for enhancers of polyglutamine aggregation in muscle cells, we identified unc-30, a neuron-specific transcription factor that regulates the synthesis of the inhibitory neurotransmitter gamma-aminobutyric acid (GABA). We used additional sensors of protein conformational states to show that defective GABA signaling or increased acetylcholine (ACh) signaling causes a general imbalance in protein homeostasis in post-synaptic muscle cells. Moreover, exposure to GABA antagonists or ACh agonists has a similar effect, which reveals that toxins that act at the neuromuscular junction are potent modifiers of protein conformational disorders. These results demonstrate the importance of intercellular communication in intracellular homeostasis.


Assuntos
Caenorhabditis elegans/metabolismo , Homeostase , Neurônios Motores/metabolismo , Proteínas Musculares/metabolismo , Proteínas/fisiologia , Transdução de Sinais , Sinapses , Acetilcolina/agonistas , Alelos , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Metanossulfonato de Etila/toxicidade , Fluoresceína-5-Isotiocianato , Técnica Indireta de Fluorescência para Anticorpo , Corantes Fluorescentes , Antagonistas GABAérgicos/farmacologia , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Proteínas Musculares/genética , Mutagênicos/toxicidade , Junção Neuromuscular/metabolismo , Junção Neuromuscular/fisiologia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Conformação Proteica , Dobramento de Proteína , Transgenes , Ácido gama-Aminobutírico/biossíntese
7.
Development ; 131(9): 1881-90, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15105369

RESUMO

The available experimental data support the hypothesis that the cap cells (CpCs) at the anterior tip of the germarium form an environmental niche for germline stem cells (GSCs) of the Drosophila ovary. Each GSC undergoes an asymmetric self-renewal division that gives rise to both a GSC, which remains associated with the CpCs, and a more posterior located cystoblast (CB). The CB upregulates expression of the novel gene, bag of marbles (bam), which is necessary for germline differentiation. Decapentaplegic (Dpp), a BMP2/4 homologue, has been postulated to act as a highly localized niche signal that maintains a GSC fate solely by repressing bam transcription. Here, we further examine the role of Dpp in GSC maintenance. In contrast to the above model, we find that an enhancer trap inserted near the Dpp target gene, Daughters against Dpp (Dad), is expressed in additional somatic cells within the germarium, suggesting that Dpp protein may be distributed throughout the anterior germarium. However, Dad-lacZ expression within the germline is present only in GSCs and to a lower level in CBs, suggesting there are mechanisms that actively restrict Dpp signaling in germ cells. We demonstrate that one function of Bam is to block Dpp signaling downstream of Dpp receptor activation, thus establishing the existence of a negative feedback loop between the action of the two genes. Moreover, in females doubly mutant for bam and the ubiquitin protein ligase Smurf, the number of germ cells responsive to Dpp is greatly increased relative to the number observed in either single mutant. These data indicate that there are multiple, genetically redundant mechanisms that act within the germline to downregulate Dpp signaling in the Cb and its descendants, and raise the possibility that a Cb and its descendants must become refractory to Dpp signaling in order for germline differentiation to occur.


Assuntos
Diferenciação Celular/fisiologia , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiologia , Células Germinativas/fisiologia , Transdução de Sinais/fisiologia , Células-Tronco/fisiologia , Animais , Contagem de Células , Regulação para Baixo , Proteínas de Drosophila/genética , Drosophila melanogaster/anatomia & histologia , Epistasia Genética , Feminino , Genes Reporter , Células Germinativas/citologia , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Ovário/citologia , Ovário/patologia , Ovário/fisiologia , Células-Tronco/citologia , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa