Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Hum Genet ; 142(6): 819-834, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37086329

RESUMO

Hearing loss is the leading sensory deficit, affecting ~ 5% of the population. It exhibits remarkable heterogeneity across 223 genes with 6328 pathogenic missense variants, making deafness-specific expertise a prerequisite for ascribing phenotypic consequences to genetic variants. Deafness-implicated variants are curated in the Deafness Variation Database (DVD) after classification by a genetic hearing loss expert panel and thorough informatics pipeline. However, seventy percent of the 128,167 missense variants in the DVD are "variants of uncertain significance" (VUS) due to insufficient evidence for classification. Here, we use the deep learning protein prediction algorithm, AlphaFold2, to curate structures for all DVD genes. We refine these structures with global optimization and the AMOEBA force field and use DDGun3D to predict folding free energy differences (∆∆GFold) for all DVD missense variants. We find that 5772 VUSs have a large, destabilizing ∆∆GFold that is consistent with pathogenic variants. When also filtered for CADD scores (> 25.7), we determine 3456 VUSs are likely pathogenic at a probability of 99.0%. Of the 224 genes in the DVD, 166 genes (74%) exhibit one or more missense variants predicted to cause a pathogenic change in protein folding stability. The VUSs prioritized here affect 119 patients (~ 3% of cases) sequenced by the OtoSCOPE targeted panel. Approximately half of these patients previously received an inconclusive report, and reclassification of these VUSs as pathogenic provides a new genetic diagnosis for six patients.


Assuntos
Surdez , Perda Auditiva , Humanos , Proteoma/genética , Perda Auditiva/genética , Mutação de Sentido Incorreto , Surdez/genética
2.
J Chem Phys ; 159(5)2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37526158

RESUMO

Computational simulation of biomolecules can provide important insights into protein design, protein-ligand binding interactions, and ab initio biomolecular folding, among other applications. Accurate treatment of the solvent environment is essential in such applications, but the use of explicit solvents can add considerable cost. Implicit treatment of solvent effects using a dielectric continuum model is an attractive alternative to explicit solvation since it is able to describe solvation effects without the inclusion of solvent degrees of freedom. Previously, we described the development and parameterization of implicit solvent models for small molecules. Here, we extend the parameterization of the generalized Kirkwood (GK) implicit solvent model for use with biomolecules described by the AMOEBA force field via the addition of corrections to the calculation of effective radii that account for interstitial spaces that arise within biomolecules. These include element-specific pairwise descreening scale factors, a short-range neck contribution to describe the solvent-excluded space between pairs of nearby atoms, and finally tanh-based rescaling of the overall descreening integral. We then apply the AMOEBA/GK implicit solvent to a set of ten proteins and achieve an average coordinate root mean square deviation for the experimental structures of 2.0 Å across 500 ns simulations. Overall, the continued development of implicit solvent models will help facilitate the simulation of biomolecules on mechanistically relevant timescales.


Assuntos
Amoeba , Solventes/química , Proteínas/química , Simulação por Computador , Fenômenos Biofísicos , Termodinâmica
3.
Hum Genet ; 141(3-4): 877-887, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35038006

RESUMO

Autosomal dominant non-syndromic hearing loss (ADNSHL) displays gene-specific progression of hearing loss, which is amenable to sequential audioprofiling. We sought to refine the natural history of ADNSHL by examining audiometric data in 5-year increments. 2175 audiograms were included from four genetic causes of ADNSHL-KCNQ4 (DFNA2), GSDME (DFNA5), WFS1 (DFNA6/14/38), and COCH (DFNA9). Annual threshold deterioration (ATD) was calculated for each gene: for the speech-frequency pure tone average, the ATD, respectively, was 0.72 dB/year, 0.94 dB/year, 0.53 dB/year, and 1.41 dB/year, with the largest drops occurring from ages 45-50 (0.89 dB/year; KCNQ4), 5-10 (1.42 dB/year; GSDME), 40-45 (0.83 dB/year; WFS1), and 50-55 (2.09 dB/year; COCH). 5-year interval analysis of audiograms reveals the gene specific natural history of KCNQ4, GSDME, WFS1 and COCH-related progressive hearing loss. Identifying ages at which hearing loss is most rapid informs clinical care and patient expectations. Natural history data are also essential to define outcomes of clinical trials that test novel therapies designed to correct or ameliorate these genetic forms of hearing loss.


Assuntos
Surdez , Perda Auditiva Neurossensorial , Perda Auditiva , Audiometria , Surdez/genética , Proteínas da Matriz Extracelular/genética , Perda Auditiva/genética , Perda Auditiva Neurossensorial/genética , Humanos , Canais de Potássio KCNQ/genética , Pessoa de Meia-Idade , Linhagem
4.
Hum Genet ; 139(10): 1315-1323, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32382995

RESUMO

We present detailed comparative analyses to assess population-level differences in patterns of genetic deafness between European/American and Japanese cohorts with non-syndromic hearing loss. One thousand eighty-three audiometric test results (921 European/American and 162 Japanese) from members of 168 families (48 European/American and 120 Japanese) with non-syndromic hearing loss secondary to pathogenic variants in one of three genes (KCNQ4, TECTA, WFS1) were studied. Audioprofile characteristics, specific mutation types, and protein domains were considered in the comparative analyses. Our findings support differences in audioprofiles driven by both mutation type (non-truncating vs. truncating) and ethnic background. The former finding confirms data that ascribe a phenotypic consequence to different mutation types in KCNQ4; the latter finding suggests that there are ethnic-specific effects (genetic and/or environmental) that impact gene-specific audioprofiles for TECTA and WFS1. Identifying the drivers of ethnic differences will refine our understanding of phenotype-genotype relationships and the biology of hearing and deafness.


Assuntos
Proteínas da Matriz Extracelular/genética , Genótipo , Perda Auditiva Neurossensorial/genética , Canais de Potássio KCNQ/genética , Proteínas de Membrana/genética , Mutação , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Povo Asiático , Audiometria , Estudos de Casos e Controles , Criança , Pré-Escolar , Feminino , Proteínas Ligadas por GPI/genética , Expressão Gênica , Estudos de Associação Genética , Perda Auditiva Neurossensorial/diagnóstico , Perda Auditiva Neurossensorial/etnologia , Perda Auditiva Neurossensorial/fisiopatologia , Humanos , Lactente , Recém-Nascido , Japão , Masculino , Pessoa de Meia-Idade , Linhagem , Fenótipo , Estados Unidos , População Branca
5.
Biophys J ; 117(3): 602-612, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31327459

RESUMO

Hearing loss is associated with ∼8100 mutations in 152 genes, and within the coding regions of these genes are over 60,000 missense variants. The majority of these variants are classified as "variants of uncertain significance" to reflect our inability to ascribe a phenotypic effect to the observed amino acid change. A promising source of pathogenicity information is biophysical simulation, although input protein structures often contain defects because of limitations in experimental data and/or only distant homology to a template. Here, we combine the polarizable atomic multipole optimized energetics for biomolecular applications force field, many-body optimization theory, and graphical processing unit acceleration to repack all deafness-associated proteins and thereby improve average structure MolProbity score from 2.2 to 1.0. We then used these optimized wild-type models to create over 60,000 structures for missense variants in the Deafness Variation Database, which are being incorporated into the Deafness Variation Database to inform deafness pathogenicity prediction. Finally, this work demonstrates that advanced polarizable atomic multipole force fields are efficient enough to repack the entire human proteome.


Assuntos
Algoritmos , Perda Auditiva/genética , Proteínas/química , Fenômenos Biofísicos , Bases de Dados de Proteínas , Humanos , Modelos Moleculares
6.
BMC Bioinformatics ; 20(1): 339, 2019 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-31208324

RESUMO

BACKGROUND: In the era of precision oncology and publicly available datasets, the amount of information available for each patient case has dramatically increased. From clinical variables and PET-CT radiomics measures to DNA-variant and RNA expression profiles, such a wide variety of data presents a multitude of challenges. Large clinical datasets are subject to sparsely and/or inconsistently populated fields. Corresponding sequencing profiles can suffer from the problem of high-dimensionality, where making useful inferences can be difficult without correspondingly large numbers of instances. In this paper we report a novel deployment of machine learning techniques to handle data sparsity and high dimensionality, while evaluating potential biomarkers in the form of unsupervised transformations of RNA data. We apply preprocessing, MICE imputation, and sparse principal component analysis (SPCA) to improve the usability of more than 500 patient cases from the TCGA-HNSC dataset for enhancing future oncological decision support for Head and Neck Squamous Cell Carcinoma (HNSCC). RESULTS: Imputation was shown to improve prognostic ability of sparse clinical treatment variables. SPCA transformation of RNA expression variables reduced runtime for RNA-based models, though changes to classifier performance were not significant. Gene ontology enrichment analysis of gene sets associated with individual sparse principal components (SPCs) are also reported, showing that both high- and low-importance SPCs were associated with cell death pathways, though the high-importance gene sets were found to be associated with a wider variety of cancer-related biological processes. CONCLUSIONS: MICE imputation allowed us to impute missing values for clinically informative features, improving their overall importance for predicting two-year recurrence-free survival by incorporating variance from other clinical variables. Dimensionality reduction of RNA expression profiles via SPCA reduced both computation cost and model training/evaluation time without affecting classifier performance, allowing researchers to obtain experimental results much more quickly. SPCA simultaneously provided a convenient avenue for consideration of biological context via gene ontology enrichment analysis.


Assuntos
Bases de Dados Genéticas , Aprendizado de Máquina , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Algoritmos , Área Sob a Curva , Ontologia Genética , Humanos , Análise de Componente Principal , RNA Neoplásico/genética , RNA Neoplásico/metabolismo
7.
Am J Hum Genet ; 95(4): 445-53, 2014 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-25262649

RESUMO

Ethnic-specific differences in minor allele frequency impact variant categorization for genetic screening of nonsyndromic hearing loss (NSHL) and other genetic disorders. We sought to evaluate all previously reported pathogenic NSHL variants in the context of a large number of controls from ethnically distinct populations sequenced with orthogonal massively parallel sequencing methods. We used HGMD, ClinVar, and dbSNP to generate a comprehensive list of reported pathogenic NSHL variants and re-evaluated these variants in the context of 8,595 individuals from 12 populations and 6 ethnically distinct major human evolutionary phylogenetic groups from three sources (Exome Variant Server, 1000 Genomes project, and a control set of individuals created for this study, the OtoDB). Of the 2,197 reported pathogenic deafness variants, 325 (14.8%) were present in at least one of the 8,595 controls, indicating a minor allele frequency (MAF) > 0.00006. MAFs ranged as high as 0.72, a level incompatible with pathogenicity for a fully penetrant disease like NSHL. Based on these data, we established MAF thresholds of 0.005 for autosomal-recessive variants (excluding specific variants in GJB2) and 0.0005 for autosomal-dominant variants. Using these thresholds, we recategorized 93 (4.2%) of reported pathogenic variants as benign. Our data show that evaluation of reported pathogenic deafness variants using variant MAFs from multiple distinct ethnicities and sequenced by orthogonal methods provides a powerful filter for determining pathogenicity. The proposed MAF thresholds will facilitate clinical interpretation of variants identified in genetic testing for NSHL. All data are publicly available to facilitate interpretation of genetic variants causing deafness.


Assuntos
Etnicidade/genética , Evolução Molecular , Exoma/genética , Variação Genética/genética , Perda Auditiva/genética , Perda Auditiva/patologia , Estudos de Casos e Controles , Conexina 26 , Conexinas , Frequência do Gene , Genoma Humano/genética , Estudo de Associação Genômica Ampla , Humanos , Filogenia
8.
Am J Med Genet B Neuropsychiatr Genet ; 171(6): 888-95, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27229768

RESUMO

Suicidal behavior imposes a tremendous cost, with current US estimates reporting approximately 1.3 million suicide attempts and more than 40,000 suicide deaths each year. Several recent research efforts have identified an association between suicidal behavior and the expression level of the spermidine/spermine N1-acetyltransferase 1 (SAT1) gene. To date, several SAT1 genetic variants have been inconsistently associated with altered gene expression and/or directly with suicidal behavior. To clarify the role SAT1 genetic variation plays in suicidal behavior risk, we present a whole-gene sequencing effort of SAT1 in 476 bipolar disorder subjects with a history of suicide attempt and 473 subjects with bipolar disorder but no suicide attempts. Agilent SureSelect target enrichment was used to sequence all exons, introns, promoter regions, and putative regulatory regions identified from the ENCODE project within 10 kb of SAT1. Individual variant, haplotype, and collapsing variant tests were performed. Our results identified no variant or assessed region of SAT1 that showed a significant association with attempted suicide, nor did any assessment show evidence for replication of previously reported associations. Overall, no evidence for SAT1 sequence variation contributing to the risk for attempted suicide could be identified. It is possible that past associations of SAT1 expression with suicidal behavior arise from variation not captured in this study, or that causal variants in the region are too rare to be detected within our sample. Larger sample sizes and broader sequencing efforts will likely be required to identify the source of SAT1 expression level associations with suicidal behavior. © 2016 Wiley Periodicals, Inc.


Assuntos
Acetiltransferases/genética , Tentativa de Suicídio/psicologia , Acetiltransferases/metabolismo , Acetiltransferases/fisiologia , Adulto , Transtorno Bipolar/genética , Feminino , Regulação da Expressão Gênica , Predisposição Genética para Doença , Variação Genética/genética , Haplótipos/genética , Humanos , Masculino , Fatores de Risco , Análise de Sequência de DNA , Ideação Suicida , Suicídio/psicologia
9.
Bioinformatics ; 30(23): 3438-9, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25123904

RESUMO

UNLABELLED: Cordova is an out-of-the-box solution for building and maintaining an online database of genetic variations integrated with pathogenicity prediction results from popular algorithms. Our primary motivation for developing this system is to aid researchers and clinician-scientists in determining the clinical significance of genetic variations. To achieve this goal, Cordova provides an interface to review and manually or computationally curate genetic variation data as well as share it for clinical diagnostics and the advancement of research. AVAILABILITY AND IMPLEMENTATION: Cordova is open source under the MIT license and is freely available for download at https://github.com/clcg/cordova.


Assuntos
Bases de Dados de Ácidos Nucleicos , Variação Genética , Algoritmos , Humanos , Internet , Software
10.
J Biomed Inform ; 54: 106-13, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25595567

RESUMO

Chromosomal microarrays (CMAs) are routinely used in both research and clinical laboratories; yet, little attention has been given to the estimation of genome-wide true and false negatives during the assessment of these assays and how such information could be used to calibrate various algorithmic metrics to improve performance. Low-throughput, locus-specific methods such as fluorescence in situ hybridization (FISH), quantitative PCR (qPCR), or multiplex ligation-dependent probe amplification (MLPA) preclude rigorous calibration of various metrics used by copy number variant (CNV) detection algorithms. To aid this task, we have established a comparative methodology, CNV-ROC, which is capable of performing a high throughput, low cost, analysis of CMAs that takes into consideration genome-wide true and false negatives. CNV-ROC uses a higher resolution microarray to confirm calls from a lower resolution microarray and provides for a true measure of genome-wide performance metrics at the resolution offered by microarray testing. CNV-ROC also provides for a very precise comparison of CNV calls between two microarray platforms without the need to establish an arbitrary degree of overlap. Comparison of CNVs across microarrays is done on a per-probe basis and receiver operator characteristic (ROC) analysis is used to calibrate algorithmic metrics, such as log2 ratio threshold, to enhance CNV calling performance. CNV-ROC addresses a critical and consistently overlooked aspect of analytical assessments of genome-wide techniques like CMAs which is the measurement and use of genome-wide true and false negative data for the calculation of performance metrics and comparison of CNV profiles between different microarray experiments.


Assuntos
Variações do Número de Cópias de DNA/genética , DNA/análise , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Algoritmos , DNA/genética , Feminino , Humanos , Masculino , Polimorfismo de Nucleotídeo Único , Curva ROC , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
11.
J Med Genet ; 50(9): 627-34, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23804846

RESUMO

BACKGROUND: Non-syndromic hearing loss (NSHL) is the most common sensory impairment in humans. Until recently its extreme genetic heterogeneity precluded comprehensive genetic testing. Using a platform that couples targeted genomic enrichment (TGE) and massively parallel sequencing (MPS) to sequence all exons of all genes implicated in NSHL, we tested 100 persons with presumed genetic NSHL and in so doing established sequencing requirements for maximum sensitivity and defined MPS quality score metrics that obviate Sanger validation of variants. METHODS: We examined DNA from 100 sequentially collected probands with presumed genetic NSHL without exclusions due to inheritance, previous genetic testing, or type of hearing loss. We performed TGE using post-capture multiplexing in variable pool sizes followed by Illumina sequencing. We developed a local Galaxy installation on a high performance computing cluster for bioinformatics analysis. RESULTS: To obtain maximum variant sensitivity with this platform 3.2-6.3 million total mapped sequencing reads per sample were required. Quality score analysis showed that Sanger validation was not required for 95% of variants. Our overall diagnostic rate was 42%, but this varied by clinical features from 0% for persons with asymmetric hearing loss to 56% for persons with bilateral autosomal recessive NSHL. CONCLUSIONS: These findings will direct the use of TGE and MPS strategies for genetic diagnosis for NSHL. Our diagnostic rate highlights the need for further research on genetic deafness focused on novel gene identification and an improved understanding of the role of non-exonic mutations. The unsolved families we have identified provide a valuable resource to address these areas.


Assuntos
Surdez/genética , Testes Genéticos/métodos , Genômica/métodos , Adolescente , Adulto , Feminino , Humanos , Masculino , Polimorfismo de Nucleotídeo Único , Reprodutibilidade dos Testes , Análise de Sequência de DNA
12.
Hum Mutat ; 34(6): 853-9, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23508994

RESUMO

The discovery of novel disease-associated variations in genes is often a daunting task in highly heterogeneous disease classes. We seek a generalizable algorithm that integrates multiple publicly available genomic data sources in a machine-learning model for the prioritization of candidates identified in patients with retinal disease. To approach this problem, we generate a set of feature vectors from publicly available microarray, RNA-seq, and ChIP-seq datasets of biological relevance to retinal disease, to observe patterns in gene expression specificity among tissues of the body and the eye, in addition to photoreceptor-specific signals by the CRX transcription factor. Using these features, we describe a novel algorithm, positive and unlabeled learning for prioritization (PULP). This article compares several popular supervised learning techniques as the regression function for PULP. The results demonstrate a highly significant enrichment for previously characterized disease genes using a logistic regression method. Finally, a comparison of PULP with the popular gene prioritization tool ENDEAVOUR shows superior prioritization of retinal disease genes from previous studies. The java source code, compiled binary, assembled feature vectors, and instructions are available online at https://github.com/ahwagner/PULP.


Assuntos
Estudos de Associação Genética , Doenças Retinianas/genética , Algoritmos , Animais , Inteligência Artificial , Biologia Computacional/métodos , Genômica/métodos , Humanos , Internet , Camundongos , Reprodutibilidade dos Testes , Software
13.
Hum Mutat ; 34(4): 539-45, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23280582

RESUMO

Autosomal dominant nonsyndromic hearing loss (ADNSHL) is a common and often progressive sensory deficit. ADNSHL displays a high degree of genetic heterogeneity and varying rates of progression. Accurate, comprehensive, and cost-effective genetic testing facilitates genetic counseling and provides valuable prognostic information to affected individuals. In this article, we describe the algorithm underlying AudioGene, a software system employing machine-learning techniques that utilizes phenotypic information derived from audiograms to predict the genetic cause of hearing loss in persons segregating ADNSHL. Our data show that AudioGene has an accuracy of 68% in predicting the causative gene within its top three predictions, as compared with 44% for a majority classifier. We also show that AudioGene remains effective for audiograms with high levels of clinical measurement noise. We identify audiometric outliers for each genetic locus and hypothesize that outliers may reflect modifying genetic effects. As personalized genomic medicine becomes more common, AudioGene will be increasingly useful as a phenotypic filter to assess pathogenicity of variants identified by massively parallel sequencing.


Assuntos
Perda Auditiva/diagnóstico , Perda Auditiva/genética , Software , Algoritmos , Audiometria , Testes Genéticos , Genótipo , Humanos , Internet , Fenótipo , Reprodutibilidade dos Testes
14.
Exp Eye Res ; 111: 105-11, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23500522

RESUMO

The normal gene expression profiles of the tissues in the eye are a valuable resource for considering genes likely to be involved with disease processes. We profiled gene expression in ten ocular tissues from human donor eyes using Affymetrix Human Exon 1.0 ST arrays. Ten different tissues were obtained from six different individuals and RNA was pooled. The tissues included: retina, optic nerve head (ONH), optic nerve (ON), ciliary body (CB), trabecular meshwork (TM), sclera, lens, cornea, choroid/retinal pigment epithelium (RPE) and iris. Expression values were compared with publically available Expressed Sequence Tag (EST) and RNA-sequencing resources. Known tissue-specific genes were examined and they demonstrated correspondence of expression with the representative ocular tissues. The estimated gene and exon level abundances are available online at the Ocular Tissue Database.


Assuntos
Éxons/genética , Fenômenos Fisiológicos Oculares/genética , Análise de Sequência com Séries de Oligonucleotídeos , Transcriptoma , Corioide/fisiologia , Corpo Ciliar/fisiologia , Bancos de Olhos , Humanos , Cristalino/fisiologia , Disco Óptico/fisiologia , Retina/fisiologia , Esclera/fisiologia , Malha Trabecular/fisiologia
15.
Proc Natl Acad Sci U S A ; 107(5): 2259-64, 2010 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-20133870

RESUMO

Mechanisms for controlling symbiont populations are critical for maintaining the associations that exist between a host and its microbial partners. We describe here the transcriptional, metabolic, and ultrastructural characteristics of a diel rhythm that occurs in the symbiosis between the squid Euprymna scolopes and the luminous bacterium Vibrio fischeri. The rhythm is driven by the host's expulsion from its light-emitting organ of most of the symbiont population each day at dawn. The transcriptomes of both the host epithelium that supports the symbionts and the symbiont population itself were characterized and compared at four times over this daily cycle. The greatest fluctuation in gene expression of both partners occurred as the day began. Most notable was an up-regulation in the host of >50 cytoskeleton-related genes just before dawn and their subsequent down-regulation within 6 h. Examination of the epithelium by TEM revealed a corresponding restructuring, characterized by effacement and blebbing of its apical surface. After the dawn expulsion, the epithelium reestablished its polarity, and the residual symbionts began growing, repopulating the light organ. Analysis of the symbiont transcriptome suggested that the bacteria respond to the effacement by up-regulating genes associated with anaerobic respiration of glycerol; supporting this finding, lipid analysis of the symbionts' membranes indicated a direct incorporation of host-derived fatty acids. After 12 h, the metabolic signature of the symbiont population shifted to one characteristic of chitin fermentation, which continued until the following dawn. Thus, the persistent maintenance of the squid-vibrio symbiosis is tied to a dynamic diel rhythm that involves both partners.


Assuntos
Aliivibrio fischeri/genética , Aliivibrio fischeri/metabolismo , Decapodiformes/genética , Decapodiformes/microbiologia , Simbiose/genética , Simbiose/fisiologia , Aliivibrio fischeri/ultraestrutura , Anaerobiose , Animais , Quitina/metabolismo , Ritmo Circadiano/genética , Ritmo Circadiano/fisiologia , Decapodiformes/anatomia & histologia , Decapodiformes/metabolismo , Dieta , Perfilação da Expressão Gênica , Genes Bacterianos , Metabolismo dos Lipídeos , Microscopia Eletrônica de Transmissão , Modelos Biológicos , Dados de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos
16.
Res Sq ; 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36778238

RESUMO

Hearing loss is the leading sensory deficit, affecting ~ 5% of the population. It exhibits remarkable heterogeneity across 223 genes with 6,328 pathogenic missense variants, making deafness-specific expertise a prerequisite for ascribing phenotypic consequences to genetic variants. Deafness-implicated variants are curated in the Deafness Variation Database (DVD) after classification by a genetic hearing loss expert panel and thorough informatics pipeline. However, seventy percent of the 128,167 missense variants in the DVD are "variants of uncertain significance" (VUS) due to insufficient evidence for classification. Here, we use the deep learning protein prediction algorithm, AlphaFold2, to curate structures for all DVD genes. We refine these structures with global optimization and the AMOEBA force field and use DDGun3D to predict folding free energy differences (∆∆G Fold ) for all DVD missense variants. We find that 5,772 VUSs have a large, destabilizing ∆∆G Fold that is consistent with pathogenic variants. When also filtered for CADD scores (> 25.7), we determine 3,456 VUSs are likely pathogenic at a probability of 99.0%. These VUSs affect 119 patients (~ 3% of cases) sequenced by the OtoSCOPE targeted panel. Approximately half of these patients previously received an inconclusive report, and reclassification of these VUSs as pathogenic provides a new genetic diagnosis for six patients.

17.
Hum Mutat ; 32(7): 825-34, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21520338

RESUMO

The prevalence of DFNA8/DFNA12 (DFNA8/12), a type of autosomal dominant nonsyndromic hearing loss (ADNSHL), is unknown as comprehensive population-based genetic screening has not been conducted. We therefore completed unbiased screening for TECTA mutations in a Spanish cohort of 372 probands from ADNSHL families. Three additional families (Spanish, Belgian, and English) known to be linked to DFNA8/12 were also included in the screening. In an additional cohort of 835 American ADNSHL families, we preselected 73 probands for TECTA screening based on audiometric data. In aggregate, we identified 23 TECTA mutations in this process. Remarkably, 20 of these mutations are novel, more than doubling the number of reported TECTA ADNSHL mutations from 13 to 33. Mutations lie in all domains of the α-tectorin protein, including those for the first time identified in the entactin domain, as well as the vWFD1, vWFD2, and vWFD3 repeats, and the D1-D2 and TIL2 connectors. Although the majority are private mutations, four of them-p.Cys1036Tyr, p.Cys1837Gly, p.Thr1866Met, and p.Arg1890Cys-were observed in more than one unrelated family. For two of these mutations founder effects were also confirmed. Our data validate previously observed genotype-phenotype correlations in DFNA8/12 and introduce new correlations. Specifically, mutations in the N-terminal region of α-tectorin (entactin domain, vWFD1, and vWFD2) lead to mid-frequency NSHL, a phenotype previously associated only with mutations in the ZP domain. Collectively, our results indicate that DFNA8/12 hearing loss is a frequent type of ADNSHL.


Assuntos
Proteínas da Matriz Extracelular/genética , Perda Auditiva Neurossensorial/genética , Adolescente , Adulto , Idoso , Audiometria/métodos , Criança , Pré-Escolar , Feminino , Efeito Fundador , Proteínas Ligadas por GPI/genética , Estudos de Associação Genética , Ligação Genética , Haplótipos , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Linhagem , Estrutura Terciária de Proteína/genética
18.
Arterioscler Thromb Vasc Biol ; 30(3): 518-25, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20018933

RESUMO

OBJECTIVE: Drugs that activate peroxisome proliferator-activated receptor (PPAR) gamma improve glucose sensitivity and lower blood pressure, whereas dominant-negative mutations in PPARgamma cause severe insulin resistance and hypertension. We hypothesize that these PPARgamma mutants regulate target genes opposite to those of ligand-mediated activation, and we tested this hypothesis on a genomewide scale. METHODS AND RESULTS: We integrated gene expression data in aorta specimens from mice treated with the PPARgamma ligand rosiglitazone with data from mice containing a globally expressed knockin of the PPARgamma P465L dominant-negative mutation. We also integrated our data with publicly available data sets containing the following: (1) gene expression profiles in many human tissues, (2) PPARgamma target genes in 3T3-L1 adipocytes, and (3) experimentally validated PPARgamma binding sites throughout the genome. Many classic PPARgamma target genes were induced by rosiglitazone and repressed by dominant-negative PPARgamma. A similar pattern was observed for about 90% of the gene sets regulated by both rosiglitazone and dominant-negative PPARgamma. Genes exhibiting this pattern of contrasting regulation were significantly enriched for nearby PPARgamma binding sites. CONCLUSIONS: These results provide convincing evidence that the PPARgamma P465L mutation causes transcriptional effects that are opposite to those mediated by PPARgamma ligand, thus validating mice carrying the mutation as a model of PPARgamma interference.


Assuntos
Aorta Torácica/metabolismo , Biologia Computacional , Perfilação da Expressão Gênica , PPAR gama/metabolismo , Animais , Ligantes , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Mutação , PPAR gama/genética , Rosiglitazona , Transdução de Sinais/fisiologia , Tiazolidinedionas/farmacologia , Regulação para Cima/efeitos dos fármacos
19.
Proc Natl Acad Sci U S A ; 105(32): 11323-8, 2008 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-18682555

RESUMO

The light-organ symbiosis between the squid Euprymna scolopes and the luminous bacterium Vibrio fischeri offers the opportunity to decipher the hour-by-hour events that occur during the natural colonization of an animal's epithelial surface by its microbial partners. To determine the genetic basis of these events, a glass-slide microarray was used to characterize the light-organ transcriptome of juvenile squid in response to the initiation of symbiosis. Patterns of gene expression were compared between animals not exposed to the symbiont, exposed to the wild-type symbiont, or exposed to a mutant symbiont defective in either of two key characters of this association: bacterial luminescence or autoinducer (AI) production. Hundreds of genes were differentially regulated as a result of symbiosis initiation, and a hierarchy existed in the magnitude of the host's response to three symbiont features: bacterial presence > luminescence > AI production. Putative host receptors for bacterial surface molecules known to induce squid development are up-regulated by symbiont light production, suggesting that bioluminescence plays a key role in preparing the host for bacteria-induced development. Further, because the transcriptional response of tissues exposed to AI in the natural context (i.e., with the symbionts) differed from that to AI alone, the presence of the bacteria potentiates the role of quorum signals in symbiosis. Comparison of these microarray data with those from other symbioses, such as germ-free/conventionalized mice and zebrafish, revealed a set of shared genes that may represent a core set of ancient host responses conserved throughout animal evolution.


Assuntos
Aliivibrio fischeri/fisiologia , Decapodiformes/fisiologia , Regulação Bacteriana da Expressão Gênica/fisiologia , Genes Bacterianos/fisiologia , Luminescência , Simbiose/fisiologia , Animais , Sequência de Bases , Decapodiformes/microbiologia , Epitélio/microbiologia , Epitélio/fisiologia , Camundongos , Dados de Sequência Molecular , Organismos Livres de Patógenos Específicos/fisiologia , Peixe-Zebra
20.
J Chem Theory Comput ; 17(4): 2323-2341, 2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33769814

RESUMO

Computational protein design, ab initio protein/RNA folding, and protein-ligand screening can be too computationally demanding for explicit treatment of solvent. For these applications, implicit solvent offers a compelling alternative, which we describe here for the polarizable atomic multipole AMOEBA force field based on three treatments of continuum electrostatics: numerical solutions to the nonlinear and linearized versions of the Poisson-Boltzmann equation (PBE), the domain-decomposition conductor-like screening model (ddCOSMO) approximation to the PBE, and the analytic generalized Kirkwood (GK) approximation. The continuum electrostatics models are combined with a nonpolar estimator based on novel cavitation and dispersion terms. Electrostatic model parameters are numerically optimized using a least-squares style target function based on a library of 103 small-molecule solvation free energy differences. Mean signed errors for the adaptive Poisson-Boltzmann solver (APBS), ddCOSMO, and GK models are 0.05, 0.00, and 0.00 kcal/mol, respectively, while the mean unsigned errors are 0.70, 0.63, and 0.58 kcal/mol, respectively. Validation of the electrostatic response of the resulting implicit solvents, which are available in the Tinker (or Tinker-HP), OpenMM, and Force Field X software packages, is based on comparisons to explicit solvent simulations for a series of proteins and nucleic acids. Overall, the emergence of performative implicit solvent models for polarizable force fields opens the door to their use for folding and design applications.


Assuntos
Modelos Químicos , Proteínas/química , Ligantes , Solventes/química , Eletricidade Estática
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa